hdu4362 Dragon Ball(dp+单调队列优化)

Dragon Ball

有m个时期,每个时期有n个龙珠,分别处于不同的位置L[i][j]:i时期 第j个龙珠 所处位置。  每次取到i时期 j龙珠时需要消耗 E[i][j] 个能量。并且还要消耗从上一时期位置x到这个时期龙珠所处位置y 的路程消耗: |x-y|    每一时期必须且仅能取一个球。问m个时期后最少的消耗。

dp[i][j]: 第i时期拿j号球时 最少消耗

dp[i][j]=min{ dp[i-1][k]+| L[i][j] - L[i-1][k] | }+E[i][j]

数据量为1000  朴素做50*1000*1000超时。。根据解题报告 用单调队列优化

解题报告:

可以看出若每个状态只由上一层位置在其左边的状态的转移而来的话:  

dp[i][j]

min { dp[i-1][k] + pos[i][j] - pos[i-1][k] } + cost[i][j]

= min { dp[i-1][k] - pos[i-1][k] } + pos[i][j] + cost[i][j]

dp[i-1][k]-pos[i-1][k]是个确定的值,就是相当于求位置在pos[i][j]左边的上一层状态中值最小的,可以用个单调队列维护。由右边转移来的类似,再处理一遍右边转移来的取最优

所以事先要对每一时的龙珠 根据位置进行从小到大排序

排序过后分别对上一时期左边的状态 和右边的状态进行转移

里面有一些操作方面的小技巧。

关于单调队列怎么个用法,我认为这个人写的比较详细http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html  题目也有些相似

个人感觉省时间的位置就是在单调队列的进出上,和记忆化存储有些类似。

具体看代码,时间不是很快。第一次单调队列优化。。。。纪念一下

#include<iostream>
#include<string.h>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;

struct Node
{
    int dp,L,E;
}node[51][1001];

int cmp(Node a,Node b)
{
    return (a.L<b.L);
}

int m,n,x;
int q[1001];//单调队列
int head,tail;

int main()
{
    int T,i,j,k;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&m,&n,&x);
        for(i=0;i<=m;i++)
        for(j=0;j<=n;j++)
        node[i][j].dp=6000000;
        for(i=1;i<=m;i++)
        for(j=1;j<=n;j++)
        scanf("%d",&node[i][j].L);
        for(i=1;i<=m;i++)
        {
            for(j=1;j<=n;j++)
            scanf("%d",&node[i][j].E);
            sort(node[i]+1,node[i]+n+1,cmp);//根据位置进行排序
        }
        for(i=1;i<=n;i++)
        { node[1][i].dp=abs(x-node[1][i].L)+node[1][i].E; }
        for(i=2;i<=m;i++)
        {
            q[0]=-1;
            head=tail=0;
            k=1;
            for(j=1;j<=n;j++)//若上一次转移的状态来自当前位置的左边
            {
                while(node[i-1][k].L<=node[i][j].L&&k<=n)//找出上一阶段在当前点位置左边的点
                {
                    while(head<tail&&q[tail-1]>(node[i-1][k].dp-node[i-1][k].L))//符合条件入队,这里是优化的关键。k的值单调的增加,而且由于位置排过序,所以相当于记忆化存储了最优值。
                    tail--;
                    q[tail++]=node[i-1][k].dp-node[i-1][k].L;
                    k++;
                }
                if(q[head]==-1) continue;//对于第一个点都在该位置右边时直接跳过
                node[i][j].dp=q[head]+node[i][j].L+node[i][j].E;
            }
            q[0]=-1;
            head=tail=0;
            k=n;
            for(j=n;j>=1;j--)//若上一次转移的状态来自当前位置的右边
            {
                while(node[i-1][k].L>node[i][j].L&&k>=1)
                {
                    while(head<tail&&q[tail-1]>(node[i-1][k].dp+node[i-1][k].L))
                    tail--;
                    q[tail++]=node[i-1][k].dp+node[i-1][k].L;
                    k--;
                }
                if(q[head]==-1) continue;
                node[i][j].dp=min(node[i][j].dp,q[head]-node[i][j].L+node[i][j].E);
            }
        }
        int min1=6000000;
        for(j=1;j<=n;j++)
        min1=min(min1,node[m][j].dp);
        printf("%d\n",min1);
    }
    return 0;
}


 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值