Python爬虫讲解(超详细)

Python爬虫是一种通过编写程序自动从互联网上获取数据的技术。下面是Python爬虫的详解:

爬虫的基本原理

爬虫的基本原理是通过模拟浏览器的行为,访问目标网站,并获取目标页面中的数据。Python爬虫可以使用requests库来发送HTTP请求,使用BeautifulSoup库或正则表达式等工具来解析HTML、XML等格式的文档,在提取所需数据时结合相关Python库和算法进行数据清洗、存储、分析等操作。

常见爬虫流程

(1)发送HTTP请求

通过Python的requests库发送HTTP请求,并设置请求头部信息,模拟用户访问目标页面的行为。

(2)解析HTML文档

使用BeautifulSoup或者其他解析库对HTML文档进行解析,获取目标数据。

(3)数据清洗

通常情况下,爬取的数据存在一定的杂乱和错误,需要进行数据清洗,保证数据质量。

(4)存储数据

爬取到的数据需要存储在本地或者数据库中,方便后续进行数据分析、处理等操作。

Python爬虫常用库介绍

(1)Requests:一个Python第三方库,可以处理HTTP请求和响应。

(2)BeautifulSoup:一个Python的HTML/XML解析器库,可以快速解析页面中的元素。

(3)Scrapy:一个Python爬虫框架,具有高效、快速的爬取速度、数据处理和管理等特点。

(4)Selenium:一个自动化测试工具,可以模拟用户操作浏览器来访问网站并获取所需数据。

Python爬虫注意事项

在使用Python爬虫时,需要遵守下列规则:

(1)尊重网站所有者的权益,不要对目标站点进行恶意攻击或破坏;

(2)爬取的数据不得用于商业目的,且必须说明数据来源,并保证不会泄露用户隐私信息;

(3)避免频繁地发送请求,否则可能被服务器判定为恶意攻击,并被禁止访问。可以通过设置合理的请求头、请求频率和使用IP池等方式降低风险。

总之,Python爬虫是一种非常有用和强大的技术工具,但在使用过程中需要遵守相关规则和法律法规。

举个python 的例子

1: 一个简单的Python爬虫例子就是从网站上爬取新闻标题以及发布日期等信息。以下是一个基本的代码示例:

import requests
from bs4 import BeautifulSoup
 
url = 'http://news.sina.com.cn/'
req = requests.get(url)
soup = BeautifulSoup(req.text, 'html.parser')
 
for news in soup.select('.news-item'):
    title = news.select('a')[0].text
    date = news.select('.time')[0].text
    print('标题:', title)
    print('日期:', date)

此段代码使用Python中的requests请求库和BeautifulSoup解析库,将新浪新闻首页的HTML文档下载并解析。然后通过CSS选择器选取新闻条目,并从中提取标题和日期信息。最后,将结果打印出来。这个例子是一个非常基础的Python爬虫例子,可以根据需要进行扩展和改进。

2:Python爬虫例子是从淘宝网上爬取商品信息,例如商品名称、价格、销量和评价等。以下是一个基本的代码示例:

import requests
from bs4 import BeautifulSoup
 
url = 'https://s.taobao.com/search?q=python编程书'
params = {
    'imgfile': '',
    'js': '1',
    'q': 'python编程书',
    'stats_clicksearch': '1',
    'initiative_id': 'staobaoz_20220901',
}
 
resp = requests.get(url, params=params)
soup = BeautifulSoup(resp.text, 'html.parser')
 
# 找到所有商品列表
items = soup.find_all('div', {'class': 'item J_MouserOnverReq  ')
 
for item in items:
    # 获取商品名
    title = item.find('div', {'class': 'title'}).text.strip()
 
    # 获取价格
    price = item.find('strong').text
 
    # 获取销量
    sales = item.find('div', {'class': 'deal-cnt'}).text.replace('笔', '')
 
    # 获取评价数量
    comment = item.find('div', {'class': 'star'}).find_all('span')[3].text[:-1]
 
    print('【名称】:{}, 【价格】:{}, 【销量】:{}, 【评价】:{}'.format(title, price, sales, comment))

此段代码使用Python中的requests请求库和BeautifulSoup解析库,通过向淘宝发送带有查询关键字的HTTP GET请求,并传递查询参数,然后获取返回的HTML页面。 然后根据CSS类选择器选取商品信息,包括商品名称、价格、销量和评价等,并打印出来。需要注意的是,网站反爬虫机制会阻止Python爬虫获得完整页面,因此可能需要实现动态IP代理池、随机请求头等功能来绕过验证。

关于Python的技术储备

在这里给大家分享一些免费的课程供大家学习,下面是课程里面的截图,扫描最下方的二维码就能全部领取,如果图片失效点击蓝色字体便可跳转哦~点这里哦

1.Python所有方向的学习路线

在这里插入图片描述

2.学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
在这里插入图片描述

3.学习资料

在这里插入图片描述

4.实战资料

实践是检验真理的唯一标准。这里的压缩包可以让你再闲暇之余帮你提升你的个人能力。
在这里插入图片描述

5.视频课程

在这里插入图片描述

好啦今天的分享就到这里结束了,快乐的时光总是短暂呢,想学习更多课程的小伙伴不要着急,有更多惊喜哦~在这里插入图片描述

Python爬虫是一种用于从网页上获取数据的技术。下面我将为您详细讲解如何使用Python进行爬虫。 第一步是安装Python和所需的库。您可以从Python官方网站下载并安装Python。常用的爬虫库包括BeautifulSoup、Requests和Scrapy。您可以使用pip命令来安装这些库,例如:pip install beautifulsoup4。 第二步是了解网页结构。在进行爬虫之前,您需要了解要爬取的网页的结构。可以通过查看网页源代码或使用开发者工具来查看网页元素和数据。 第三步是发送HTTP请求并获取网页内容。您可以使用Requests库来发送HTTP请求,并获取网页的HTML内容。示例代码如下: ```python import requests url = "https://www.example.com" response = requests.get(url) html_content = response.text ``` 第四步是使用BeautifulSoup库解析网页内容。BeautifulSoup库可以帮助您从HTML文档中提取所需的信息。示例代码如下: ```python from bs4 import BeautifulSoup soup = BeautifulSoup(html_content, "html.parser") # 在这里使用BeautifulSoup提取所需的信息 ``` 第五步是处理提取到的数据。您可以根据需要对提取到的数据进行处理,例如保存到文件、存入数据库或进行进一步分析。 最后一步是设置爬虫的限制。在进行爬虫时,需要注意遵守网站的爬虫规则,如设置适当的请求频率、使用合适的User-Agent等。 以上就是Python爬虫的基本步骤和简要介绍。希望对您有所帮助!如果您有任何问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值