练习两年半......写给python初中级的进阶指南,该怎么学?

前言

分享python路上有趣的知识点,不仅仅于技术,更有更多面试题,教程,源码分享!

内容

1.面试专题几十个大厂面试题
2.入门基础教程
3.11模块零基础到精通笔记
4.百个项目实战+爬虫教程+代码
5.量化交易,机器学习,深度学习
6.Python游戏源码
7.交流学习
8.了解接单市场
9.DNF自动识别打怪
10.3263页学习资料

曾一度比较迷茫,最开始是打算从事数据分析这块的方向的,但是后面面试的时候发现所学的东西有时候连面试都无法应付,经常遇到一个问题又会延伸下去,然后身边的人又经常说你的本心如此,但是花这么多时间去学其他的,已经偏离了开始的方向了,没有办法阿,技术这个玩意,单独一个方向除非钻研的很深,否则难以独善其身。

今天谈一下练习两年半的心得,欢迎你在评论区留下你的心得,补充我的一些缺失和不足

一丶基础能力

最最最基础的第一步莫过于计算机基础入门了,相对于后续的什么编程语法,并发编程,数据库编程等等,计算机基础入门才算真正的踏入这个行业的第一步

1.学习目标及建议

快速掌握并了解计算机的基本组成,了解硬件和软件,探索计算机编程和程序指令,学习过程中,一定要实操,只有实操过程中才能发现自己是否已经掌握所学。

2.计算机理论基础
  • cpu
  • 内存
  • 硬盘
  • 操作系统
  • 硬件软件的关系
  • 文件系统
  • 进程和线程
3.探索计算机编程语言及程序指令

计算机语言的学习,运行方式,算法,计算机编码等等

4.二进制算法和十六进制算法

二进制算法和十六进制算法都是计算机中常用的进制表示方法,下面分别进行解释。

二进制算法

二进制算法是一种基于2为底数的进制表示方法,只包含0和1两个数字。在计算机中,所有的数据都是以二进制形式存储和处理的。二进制算法的优点是简单易懂,计算速度快,缺点是表示数字的位数较多,不便于人类阅读和理解。

二进制算法的基本原理是每一位数字的权值都是2的幂次方,从右往左依次为1、2、4、8、16、32、64、128……以此类推。例如,二进制数1101表示的是1×2³+1×2²+0×2¹+1×2⁰=13。

二进制算法在计算机中广泛应用,例如在计算机内存中存储数据、进行逻辑运算、进行位运算等方面都有应用。

十六进制算法

十六进制算法是一种基于16为底数的进制表示方法,包含09和AF共16个数字。在计算机中,十六进制算法常用于表示内存地址、颜色值等数据。十六进制算法的优点是表示数字的位数较少,便于人类阅读和理解,缺点是计算速度较慢。

十六进制算法的基本原理是每一位数字的权值都是16的幂次方,从右往左依次为1、16、256、4096、65536、1048576、16777216……以此类推。例如,十六进制数3F表示的是3×16¹+15×16⁰=63。

在计算机中,十六进制数常用于表示内存地址、颜色值等数据。例如,内存地址0x0000表示的是十进制数0,内存地址0xFFFF表示的是十进制数65535。颜色值常用RGB表示,其中R、G、B的取值范围为0255,可以用十六进制表示为00FF。例如,红色的RGB值为(255,0,0),可以用十六进制表示为#FF0000。

总之,二进制算法和十六进制算法都是计算机中常用的进制表示方法,各有优缺点,应根据具体情况选择使用。

前面这些过关了,好,我们正是踏出第一步关于python的脚步:编程语法学习

二丶初级阶段:

上岸第一剑,python编程语法必修

1.Python基础语法:变量、数据类型、运算符、流程控制语句、函数等

  • 变量:变量是用来存储数据的容器,可以存储不同类型的数据,如整数、浮点数、字符串等。在Python中,变量的命名规则是以字母或下划线开头,后面可以跟字母、数字或下划线。

  • 数据类型:Python中常见的数据类型包括整数、浮点数、字符串、布尔值、列表、元组、字典等。不同的数据类型有不同的操作方法和特点。

  • 运算符:Python中常见的运算符包括算术运算符、比较运算符、逻辑运算符、位运算符等。运算符可以对变量进行操作,得到新的结果。

  • 流程控制语句:流程控制语句包括条件语句和循环语句。条件语句用于根据条件执行不同的代码块,常见的条件语句有if语句和switch语句;循环语句用于重复执行某段代码,常见的循环语句有for循环和while循环。

  • 函数:函数是一段可重复使用的代码块,可以接受参数并返回值。在Python中,函数的定义以def关键字开头,后面跟函数名和参数列表,函数体中包含具体的代码实现。

总的来说,Python基础语法是学习Python编程的基础,掌握好这些内容可以让我们更好地理解和编写Python程序。

2.常用数据结构:列表、元组、字典、集合等

  • 列表(List)是Python中最常用的数据结构之一,它是一个有序的集合,可以存储任意类型的数据。列表用方括号[]表示,其中的元素用逗号隔开。

例如:

my_list = [1, 2, 3, 'hello', 'world']

  • 元组(Tuple)也是一个有序的集合,与列表类似,但是元组一旦创建就不能修改。元组用圆括号()表示,其中的元素用逗号隔开。

例如:

my_tuple = (1, 2, 3, 'hello', 'world')

  • 字典(Dictionary)是Python中另一个常用的数据结构,它是一个无序的键值对集合,可以存储任意类型的数据。字典用花括号{}表示,其中的元素用冒号:隔开,键值对之间用逗号隔开。

例如:

my_dict = {'name': 'Tom', 'age': 18, 'gender': 'male'}

  • 集合(Set)是Python中的一种无序的、不重复的数据结构,可以进行交集、并集、差集等操作。集合用花括号{}表示,其中的元素用逗号隔开。

例如:

my_set = {1, 2, 3, 4, 5}

3.文件操作:读写文件、文件路径操作等

Python文件操作

  • 打开文件:使用open()函数打开文件,可以指定文件名、打开模式等参数。
file = open('test.txt', 'r')

  • 读取文件:使用read()函数读取文件内容,可以一次性读取整个文件,也可以按行读取。
content = file.read() # 一次性读取整个文件
print(content)

for line in file: # 按行读取文件
    print(line)

  • 写入文件:使用write()函数向文件中写入内容,可以一次性写入整个文件,也可以按行写入。
file = open('test.txt', 'w')
file.write('Hello, world!\n')
file.write('Python is awesome!')
file.close()

  • 关闭文件:使用close()函数关闭文件,释放文件资源。
file.close()

  • 文件路径操作:使用os模块中的函数进行文件路径操作,如获取当前工作目录、创建目录、删除目录等。
import os

# 获取当前工作目录
print(os.getcwd())

# 创建目录
os.mkdir('test')

# 删除目录
os.rmdir('test')

4.模块和包:导入模块、自定义模块、包的概念等。

模块是一个包含 Python 定义和语句的文件,可以被其他程序引入和使用。在 Python 中,每个文件都被视为一个模块,模块名就是文件名去掉后缀。

导入模块可以使用 import 语句,例如:

import math
print(math.pi)

自定义模块就是创建一个 Python 文件,其中包含一些函数、类或变量等定义,然后在其他程序中导入使用。例如,我们可以创建一个名为 my_module.py 的文件,其中包含一个函数 add:

def add(a, b):
    return a + b

然后在其他程序中导入并使用该函数:

import my_module
print(my_module.add(1, 2))

包是一种组织 Python 模块的方式,可以将多个模块组织在一个文件夹中,这个文件夹就是一个包。包中必须包含一个名为 __init__.py 的文件,这个文件可以是空文件,也可以包含一些初始化代码。例如,我们可以创建一个名为 my_package 的包,其中包含一个名为 my_module 的模块:

my_package/
    __init__.py
    my_module.py

然后在其他程序中导入并使用该模块:

import my_package.my_module
print(my_package.my_module.add(1, 2))

也可以使用 from 语句导入模块中的特定函数或变量:

from my_package.my_module import add
print(add(1, 2))

文件路径操作可以使用 os 模块中的函数,例如:

import os
print(os.getcwd())  # 获取当前工作目录
print(os.path.abspath('my_module.py'))  # 获取文件的绝对路径

5.异常处理:try-except语句、异常类型等

在Python中,异常处理是一种处理程序运行时错误的机制。当程序运行时发生错误,Python会抛出一个异常。为了避免程序崩溃,我们可以使用try-except语句来捕获异常并进行处理。

try-except语句的基本语法如下

try:
    # 可能会抛出异常的代码块
except ExceptionType:
    # 处理异常的代码块

在try语句块中,我们编写可能会抛出异常的代码。如果在try语句块中发生了异常,Python会跳过try语句块中剩余的代码,并执行except语句块中的代码。

在except语句块中,我们可以编写处理异常的代码。ExceptionType是异常类型,可以是Python内置的异常类型,也可以是自定义的异常类型。如果发生的异常类型与except语句块中指定的异常类型相同,那么该except语句块中的代码就会被执行。

除了指定特定的异常类型,我们还可以使用通用的异常类型Exception来捕获所有类型的异常。例如:

try:
    # 可能会抛出异常的代码块
except Exception:
    # 处理异常的代码块

在except语句块中,我们可以使用异常对象来获取异常信息。例如:

try:
    # 可能会抛出异常的代码块
except Exception as e:
    # 处理异常的代码块
    print("发生了异常:", e)

在except语句块中,我们可以使用多个except语句块来处理不同类型的异常。例如:

try:
    # 可能会抛出异常的代码块
except TypeError:
    # 处理类型错误的代码块
except ValueError:
    # 处理值错误的代码块
except Exception:
    # 处理其他类型的异常的代码块

在except语句块中,我们还可以使用else语句块来处理没有发生异常的情况。例如:

try:
    # 可能会抛出异常的代码块
except Exception:
    # 处理异常的代码块
else:
    # 没有发生异常的代码块

在except语句块中,我们还可以使用finally语句块来编写无论是否发生异常都需要执行的代码。例如:

try:
    # 可能会抛出异常的代码块
except Exception:
    # 处理异常的代码块
finally:
    # 无论是否发生异常都需要执行的代码块

总之,异常处理是Python中非常重要的一部分,它可以帮助我们编写更加健壮的程序。

6.函数式编程:lambda表达式、map、filter、reduce等

函数式编程是一种编程范式,它将计算机程序视为数学函数的组合。在函数式编程中,函数是一等公民,可以作为参数传递给其他函数,也可以作为返回值返回。Python支持函数式编程,其中一些常用的函数式编程工具包括:

  • lambda表达式:lambda表达式是一种匿名函数,它可以在需要函数的地方定义函数。它的语法是:lambda 参数列表: 表达式。例如,lambda x: x**2表示一个接受一个参数x并返回x的平方的函数。

  • map函数:map函数接受一个函数和一个可迭代对象作为参数,返回一个新的可迭代对象,其中每个元素都是将原可迭代对象中的元素应用于函数的结果。例如,map(lambda x: x**2, [1, 2, 3])返回一个可迭代对象,其中包含1,4和9。

  • filter函数:filter函数接受一个函数和一个可迭代对象作为参数,返回一个新的可迭代对象,其中包含原可迭代对象中满足函数条件的元素。例如,filter(lambda x: x%2==0, [1, 2, 3, 4])返回一个可迭代对象,其中包含2和4。

  • reduce函数:reduce函数接受一个函数和一个可迭代对象作为参数,返回一个单一的值,该值是将原可迭代对象中的元素应用于函数的结果。例如,reduce(lambda x, y: x+y, [1, 2, 3, 4])返回10,因为它计算了1+2+3+4的结果。

这些函数式编程工具包可以帮助简化代码,使其更易于理解和维护

7.面向对象编程:类、对象、继承、多态等

Python面向对象编程

  • :类是一种抽象的数据类型,它定义了一组属性和方法,用于描述某种对象的行为和特征。类是面向对象编程的基础,通过类可以创建对象。

  • 对象:对象是类的实例,它具有类定义的属性和方法。每个对象都是独立的,它们可以有不同的属性值,但是它们都属于同一个类。

  • 继承:继承是一种机制,它允许一个类继承另一个类的属性和方法。被继承的类称为父类或基类,继承的类称为子类或派生类。子类可以重写父类的方法,也可以添加新的属性和方法。

  • 多态:多态是一种特性,它允许不同的对象对同一消息做出不同的响应。多态可以通过继承和接口实现。

下面是一些Python面向对象编程的例子:

定义一个类:

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def say_hello(self):
        print("Hello, my name is", self.name, "and I am", self.age, "years old.")

创建一个对象:

person = Person("Alice", 25)

调用对象的方法:

person.say_hello()

继承一个类:

class Student(Person):
    def __init__(self, name, age, grade):
        super().__init__(name, age)
        self.grade = grade

    def say_hello(self):
        print("Hello, my name is", self.name, "and I am a student in grade", self.grade)

创建一个子类的对象:

student = Student("Bob", 18, 12)

调用子类对象的方法:

student.say_hello()

输出:

Hello, my name is Bob and I am a student in grade 12

三丶中级阶段:

1.正则表达式:匹配规则、re模块等。

正则表达式是一种用来匹配字符串的模式,它可以用来检索、替换和分割字符串。在Python中,我们可以使用re模块来使用正则表达式。

常用的正则表达式匹配规则包括

  • 字符匹配:匹配指定的字符,如a、b、c等。

  • 字符集合匹配:匹配指定的字符集合,如[abc]表示匹配a、b、c中的任意一个字符。

  • 范围匹配:匹配指定的范围内的字符,如[a-z]表示匹配小写字母a到z中的任意一个字符。

  • 重复匹配:匹配指定的字符重复出现的次数,如a{3}表示匹配连续出现3个a的字符串。

  • 通配符匹配:匹配任意一个字符,如.表示匹配任意一个字符。

  • 边界匹配:匹配字符串的边界,如^表示匹配字符串的开头,$表示匹配字符串的结尾。

在Python中,我们可以使用re模块来进行正则表达式的匹配。常用的re模块函数包括:

  • re.match(pattern, string):从字符串的开头开始匹配,如果匹配成功返回一个匹配对象,否则返回None。

  • re.search(pattern, string):在字符串中搜索匹配,如果匹配成功返回一个匹配对象,否则返回None。

  • re.findall(pattern, string):在字符串中搜索匹配,返回所有匹配的字符串列表。

  • re.sub(pattern, repl, string):在字符串中搜索匹配,将匹配的字符串替换为指定的字符串。

除了以上常用的函数外,re模块还提供了其他一些函数,如re.split()re.compile()等。

2.网络编程:socket编程、HTTP协议、TCP/IP协议等

上岸第一剑,编程语法必修:python并发编程

网络编程是指通过计算机网络实现程序之间的通信和数据交换。其中,socket编程是网络编程的基础,它提供了一种通用的网络编程接口,可以在不同的操作系统和编程语言中使用。HTTP协议是应用层协议,用于在Web浏览器和Web服务器之间传输数据。TCP/IP协议是网络协议的基础,它定义了计算机网络中数据的传输方式和规则。

在Python中,可以使用socket模块进行网络编程。通过socket模块,可以创建客户端和服务器端的socket对象,实现数据的传输和通信。HTTP协议可以使用Python内置的urllib和urllib2模块进行访问和处理。TCP/IP协议可以使用Python的socket模块进行实现。

在网络编程中,还需要了解网络安全相关的知识,如加密、认证、授权等。此外,还需要了解网络性能优化、负载均衡、高可用性等方面的知识。

3.数据库操作:SQL语句、MySQL、SQLite、MongoDB等

SQL语句是结构化查询语言(Structured Query Language)的缩写,是一种用于管理关系型数据库的语言。SQL语句可以用于创建、修改和删除数据库中的表、索引、视图等对象,以及查询和更新表中的数据。

MySQL是一种开源的关系型数据库管理系统,它支持多用户、多线程和多个存储引擎,包括InnoDB、MyISAM、Memory等。MySQL使用标准的SQL语言进行数据管理,同时也支持存储过程、触发器、视图等高级功能。

SQLite是一种轻量级的关系型数据库管理系统,它不需要独立的服务器进程或配置,可以直接嵌入到应用程序中。SQLite支持标准的SQL语言,同时也支持事务、触发器、视图等高级功能。

MongoDB是一种面向文档的NoSQL数据库管理系统,它使用JSON格式存储数据,支持动态查询、索引、复制、分片等功能。MongoDB不需要预定义表结构,可以灵活地存储和查询数据,适用于大规模、高并发的Web应用场景。

4.多线程和多进程:线程、进程、锁、信号量等

多线程,多进程,协程

线程

线程是操作系统能够进行运算调度的最小单位,它被包含在进程中,是进程中的实际运作单位。Python中的线程模块是_threadthreading,其中threading是对_thread的封装,更加易用。

进程

进程是操作系统中的一个程序执行单元,它包含了程序代码、数据和进程控制块等信息。Python中的进程模块是multiprocessing,它提供了Process类来创建进程。

锁是一种同步机制,用于控制对共享资源的访问。Python中的锁有两种:threading.Lockmultiprocessing.Lock。它们都提供了acquire()release()方法,用于获取和释放锁。

信号量

信号量是一种同步机制,用于控制对共享资源的访问。Python中的信号量有两种:threading.Semaphoremultiprocessing.Semaphore。它们都提供了acquire()release()方法,用于获取和释放信号量。

5.GUI编程:Tkinter、PyQt等

GUI编程是指通过图形用户界面(Graphical User Interface,简称GUI)来实现程序的交互和操作。Python中常用的GUI库有Tkinter和PyQt。

1.Tkinter

Tkinter是Python自带的GUI库,它提供了一系列的组件,如按钮、标签、文本框等,可以用来构建GUI界面。Tkinter的优点是简单易学,适合初学者使用。以下是一个简单的Tkinter程序:

import tkinter as tk

root = tk.Tk()
root.title("Hello, Tkinter!")
root.geometry("300x200")

label = tk.Label(root, text="Hello, Tkinter!")
label.pack()

button = tk.Button(root, text="Quit", command=root.quit)
button.pack()

root.mainloop()

2.PyQt

PyQt是一个基于Qt库的Python GUI库,它提供了丰富的组件和功能,可以用来构建复杂的GUI界面。PyQt的优点是功能强大,支持跨平台,但学习曲线较陡峭。以下是一个简单的PyQt程序:

import sys
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QPushButton

class MyWindow(QWidget):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("Hello, PyQt!")
        self.setGeometry(100, 100, 300, 200)

        self.label = QLabel(self)
        self.label.setText("Hello, PyQt!")
        self.label.move(100, 50)

        self.button = QPushButton(self)
        self.button.setText("Quit")
        self.button.move(120, 100)
        self.button.clicked.connect(self.close)

if __name__ == '__main__':
    app = QApplication(sys.argv)
    window = MyWindow()
    window.show()
    sys.exit(app.exec_())

3.多线程和多进程

在GUI编程中,为了避免界面卡顿或无响应,常常需要使用多线程或多进程来处理耗时的操作。Python中提供了threadingmultiprocessing两个模块来实现多线程和多进程。

多线程的实现

import threading

def worker():
    print("Worker thread started")
    # do some work here
    print("Worker thread finished")

t = threading.Thread(target=worker)
t.start()

多进程的实现

import multiprocessing

def worker():
    print("Worker process started")
    # do some work here
    print("Worker process finished")

p = multiprocessing.Process(target=worker)
p.start()

锁和信号量

在多线程或多进程中,为了避免多个线程或进程同时访问共享资源而导致的数据不一致或死锁等问题,常常需要使用锁和信号量来进行同步控制。

锁的实现:

import threading

lock = threading.Lock()

def worker():
    with lock:
        print("Worker thread started")
        # do some work here
        print("Worker thread finished")

t1 = threading.Thread(target=worker)
t2 = threading.Thread(target=worker)
t1.start()
t2.start()

信号量的实现:

import threading

semaphore = threading.Semaphore(2)

def worker():
    with semaphore:
        print("Worker thread started")
        # do some work here
        print("Worker thread finished")

t1 = threading.Thread(target=worker)
t2 = threading.Thread(target=worker)
t3 = threading.Thread(target=worker)
t1.start()
t2.start()
t3.start()

6.数据分析和可视化:NumPy、Pandas、Matplotlib等

NumPy是Python中用于科学计算的一个重要库,它提供了高效的多维数组对象以及用于处理这些数组的工具。NumPy的主要功能包括:

  • ndarray:一种高效的多维数组对象,支持快速的数值计算和广播功能。

  • 数组操作:包括数组的索引、切片、迭代、形状操作等。

  • 数学函数:包括常见的数学函数、线性代数、傅里叶变换等。

  • 随机数生成:包括多种分布的随机数生成器。

Pandas是Python中用于数据分析的一个重要库,它提供了高效的数据结构和数据分析工具。Pandas的主要功能包括:

  • Series:一种类似于一维数组的对象,支持标签索引和基本的统计分析。

  • DataFrame:一种类似于二维表格的对象,支持行列索引、数据筛选、数据清洗、数据聚合等操作。

  • 数据清洗:包括缺失值处理、重复值处理、数据类型转换等。

  • 数据聚合:包括分组、透视表、交叉表等。

Matplotlib是Python中用于数据可视化的一个重要库,它提供了各种绘图工具和图形界面。Matplotlib的主要功能包括:

  • 基本绘图:包括线图、散点图、柱状图、饼图等。

  • 高级绘图:包括等高线图、3D图、热力图等。

  • 图形界面:包括交互式绘图、动画绘图等。

总之,NumPy、Pandas和Matplotlib是Python中用于数据分析和可视化的三个重要库,它们的功能互补,可以协同工作,为数据分析和可视化提供了强大的支持。

7.Web开发:Django、Flask等

Django和Flask都是Python的Web框架,用于开发Web应用程序。它们都有自己的优点和适用场景。

Django是一个全功能的Web框架,它提供了许多内置的功能,如ORM、模板引擎、表单处理、用户认证等。Django适用于大型Web应用程序,因为它提供了许多内置的功能,可以快速开发复杂的Web应用程序。Django还有一个强大的社区,提供了许多第三方插件和扩展,可以轻松地扩展Django的功能。

Flask是一个轻量级的Web框架,它提供了基本的功能,如路由、模板引擎、请求和响应处理等。Flask适用于小型Web应用程序,因为它非常灵活,可以根据需要添加所需的功能。Flask还有一个活跃的社区,提供了许多第三方插件和扩展,可以轻松地扩展Flask的功能。

稍后出专题介绍…

四丶高级阶段:

1.深度学习:TensorFlow、Keras、PyTorch等

TensorFlow是由Google开发的一个开源机器学习框架,它提供了一种灵活的、高效的方式来构建和训练各种机器学习模型。TensorFlow支持多种编程语言,包括Python、C++、Java等,可以在各种硬件平台上运行,包括CPU、GPU和TPU等。TensorFlow的主要特点是它的计算图模型,它将计算表示为一个有向无环图,其中节点表示操作,边表示数据流。这种模型使得TensorFlow可以高效地处理大规模的数据和复杂的计算任务。

Keras是一个高级神经网络API,它是基于TensorFlow、Theano和CNTK等深度学习框架之上的一个封装。Keras提供了一种简单、易用的方式来构建和训练各种深度学习模型,包括卷积神经网络、循环神经网络、自编码器等。Keras的主要特点是它的模块化设计,它将各种神经网络层和激活函数等组件封装成了模块,使得用户可以轻松地组合这些模块来构建自己的模型。Keras还提供了一些方便的工具,如数据预处理、模型可视化等,使得用户可以更加方便地进行深度学习任务。

PyTorch是由Facebook开发的一个开源机器学习框架,它提供了一种动态计算图模型,使得用户可以更加灵活地构建和训练各种深度学习模型。PyTorch的主要特点是它的易用性和灵活性,它提供了一种简单、易用的方式来构建和训练深度学习模型,同时也提供了一些高级的功能,如自动微分、动态计算图等,使得用户可以更加灵活地进行深度学习任务。PyTorch还提供了一些方便的工具,如数据加载、模型可视化等,使得用户可以更加方便地进行深度学习任务。

目前暂无更多内容更新,但是整理了内容,打算后续抽空瞅瞅…

2.自然语言处理:NLTK、SpaCy

自然语言处理(NLP)是人工智能领域的一个重要分支,它涉及到计算机如何理解和处理人类语言。在Python中,有许多流行的NLP库,其中最常用的是NLTK和SpaCy。

NLTK

自然语言工具包(Natural Language Toolkit,简称NLTK)是Python中最流行的NLP库之一。它提供了许多用于文本处理和分析的工具和数据集,包括词性标注、命名实体识别、语法分析、情感分析等。NLTK还包括一些常用的语料库,如布朗语料库、古腾堡语料库等。

NLTK的优点是它非常适合教学和研究,因为它提供了大量的文档和示例代码,可以帮助初学者快速入门。此外,NLTK还支持多种自然语言处理任务,可以满足不同的需求。

SpaCy

SpaCy是另一个流行的NLP库,它被设计为高效、快速和易于使用。与NLTK不同,SpaCy的重点是性能和速度,它可以处理大规模的文本数据,并且速度非常快。SpaCy提供了许多功能,包括词性标注、命名实体识别、依存句法分析等。

SpaCy的优点是它非常适合处理大规模的文本数据,因为它的速度非常快。此外,SpaCy还提供了一些高级功能,如实体链接和文本分类,可以帮助用户更好地理解和分析文本数据。

总的来说,NLTK和SpaCy都是非常优秀的NLP库,它们各有优点,可以根据具体需求选择使用。如果你需要进行教学或研究,或者需要支持多种自然语言处理任务,那么NLTK是一个不错的选择。如果你需要处理大规模的文本数据,并且需要快速的处理速度,那么SpaCy是一个更好的选择。

3.数据挖掘:Scikit-learn、XGBoost等(稍后更新系列文章以及文档)

Scikit-learn和XGBoost是两个常用于数据挖掘和机器学习的库。

Scikit-learn是一个Python机器学习库,提供了一系列简单易用的数据挖掘和机器学习算法,包括分类、回归、聚类、降维等。Scikit-learn的优势在于其丰富的文档、易上手的API和高效的算法实现,让开发者可以快速的构建机器学习模型。此外,Scikit-learn还提供了丰富的模型评估和选择工具,可以帮助开发者评估和选择最优的机器学习模型。

XGBoost是一种基于决策树的机器学习算法,也是一种梯度提升框架。XGBoost采用优化策略来实现高效的模型训练和预测。相比其他基于决策树的算法,XGBoost的优势在于其高效的训练和预测速度、准确的预测结果和鲁棒的性能。XGBoost在各种数据挖掘和机器学习比赛中表现优异,成为了业内广泛使用的机器学习算法库之一。

总的来说,Scikit-learn和XGBoost都是非常优秀的机器学习库。Scikit-learn提供了丰富的算法和统一的API,适用于各种机器学习任务;而XGBoost采用了优化策略来实现高效的训练和预测,并在机器学习竞赛中表现出色。选择使用哪个库,应依据具体的任务和需求来决定。

目前暂无更多内容更新,但是整理了内容,打算后续抽空瞅瞅…

4.分布式系统:Hadoop、Spark等(稍后更新系列文章以及文档)

Hadoop和Spark都是用于构建分布式系统的开源工具,稍后更新系列文章以及文档…

Hadoop是一个由Apache基金会开发的分布式系统框架,用于处理大规模数据集的分布式存储和处理。Hadoop包括两个核心组件:Hadoop分布式文件系统(HDFS)和MapReduce计算模型。HDFS实现了文件系统的分布式存储,可在多个节点上保存大规模数据集。MapReduce计算模型则将数据处理任务划分为多个子任务,在集群上并行处理以提高效率。

Spark是Apache基金会开发的开源大数据处理引擎,也是一个基于内存计算的分布式计算系统。Spark的主要优势在于其高效的内存计算机制和高可扩展性,支持在大规模数据处理中实现近实时的计算。Spark提供了丰富的API,支持多种计算模型和数据源,并支持在分布式环境下进行数据处理、机器学习、图计算等。

总的来说,Hadoop和Spark都是优秀的分布式系统工具,但在具体应用中要根据不同的场景、需求和数据特性选择适合的方案。Hadoop在大规模数据存储和批处理中表现优异,而Spark则更适用于对实时性要求较高的数据处理和分析任务。此外,在内存消耗方面,Spark相对更占用内存,对系统的要求更高,但能大大提高效率。

5.Web爬虫:Requests、BeautifulSoup、Scrapy

1.Requests

Requests是一个Python HTTP库,它可以让我们发送HTTP/1.1请求。它非常简单易用,可以轻松地发送HTTP请求,包括GET、POST、PUT、DELETE等请求方式。Requests库还支持Cookie、Session、SSL等功能。

使用Requests库,我们可以轻松地获取网页内容,例如:

import requests

response = requests.get('https://www.baidu.com')
print(response.text)

2.BeautifulSoup

BeautifulSoup是一个Python库,用于从HTML和XML文件中提取数据。它可以解析HTML和XML文件,并提供了一些简单易用的API,用于查找、遍历和修改文档树。

使用BeautifulSoup库,我们可以轻松地从网页中提取数据,例如:

from bs4 import BeautifulSoup
import requests

response = requests.get('https://www.baidu.com')
soup = BeautifulSoup(response.text, 'html.parser')
print(soup.title.string)

3.Scrapy

Scrapy是一个Python框架,用于爬取网站并提取结构化数据。它提供了一些强大的功能,例如自动化请求、数据提取、数据存储和数据清洗等。

使用Scrapy框架,我们可以轻松地编写爬虫程序,例如:

import scrapy

class MySpider(scrapy.Spider):
    name = 'myspider'
    start_urls = ['https://www.baidu.com']

    def parse(self, response):
        title = response.xpath('//title/text()').extract_first()
        print(title)

未完待续…

6.其他高级主题:装饰器、元类、协程、异步编程等。

1.装饰器

装饰器是一种Python语法,它可以在不改变原函数代码的情况下,为函数添加额外的功能。装饰器本质上是一个函数,它接受一个函数作为参数,并返回一个新的函数。

装饰器的语法如下

@decorator
def func():
    pass

其中,decorator是装饰器函数,func是被装饰的函数。

装饰器可以用来实现很多功能,比如:

  • 记录函数执行时间
  • 缓存函数结果
  • 检查函数参数类型
  • 验证用户权限
2.元类

元类是Python中比较高级的概念,它可以用来控制类的创建过程。元类本质上是一个类,它可以用来创建其他类。

元类的语法如下:

class MyMetaClass(type):
    pass

class MyClass(metaclass=MyMetaClass):
    pass

其中,MyMetaClass是元类,MyClass是由元类创建的类。

元类可以用来实现很多功能,比如:

  • 检查类定义是否符合规范
  • 动态修改类定义
  • 自动注册子类
3.协程

协程是一种轻量级的线程,它可以在单线程中实现并发。协程本质上是一种特殊的函数,它可以在执行过程中暂停,并在需要时恢复执行。

协程的语法如下:

async def func():
    pass

其中,async关键字表示这是一个协程函数,func是协程函数的名称。

协程可以用来实现很多功能,比如:

  • 异步IO操作
  • 并发任务处理
  • 高效的网络编程
4.异步编程

异步编程是一种编程模式,它可以在单线程中实现并发。异步编程本质上是一种事件驱动的编程模式,它可以在事件发生时立即响应。

异步编程的语法如下:

async def func():
    pass

asyncio.run(func())

其中,async关键字表示这是一个协程函数,asyncio.run()函数可以运行协程函数。

异步编程可以用来实现很多功能,比如:

  • 高效的网络编程
  • 并发任务处理
  • 异步IO操作

如果你对Python感兴趣,想要学习python,这里给大家分享一份Python全套学习资料,都是我自己学习时整理的,希望可以帮到你,一起加油!

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

1️⃣零基础入门

① 学习路线

对于从来没有接触过Python的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述

2️⃣国内外Python书籍、文档

① 文档和书籍资料

在这里插入图片描述

3️⃣Python工具包+项目源码合集

①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

4️⃣Python面试题

我们学会了Python之后,有了技能就可以出去找工作啦!下面这些面试题是都来自阿里、腾讯、字节等一线互联网大厂,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值