NLP
文章平均质量分 83
z0n1l2
这个作者很懒,什么都没留下…
展开
-
Word2Vec-Tutorial-The-Skip-Gram-Model
源Chris McCormick Word2Vec(译注)Word2vec是一组产生word embeddings的模型(word embeddings是NLP中把词或短语映射到数字或向量的方法的合称).这些模型由2层的神经网络实现,通过训练来重建词或短语的语法上下文. Word2vec包括两个结构: continuous bag-of-words(CBOW)和continuou...翻译 2018-07-03 12:29:28 · 536 阅读 · 0 评论 -
Word2Vec-Tutorial-Part-2-Negative-Sampling
源论文注释的源码本教程将介绍一些对基本skip-gram模型的修改,这些修改使得模型训练的困难度大幅降低. 上一篇教程中介绍的skip-gram模型使用的神经网络尺寸很大. 教程中给出的例子中有300个词向量,10000个词. 神经网络三层,对应2个权重矩阵.每个权重矩阵的维度都是300×10000300×10000300 \times 10000,包括3百万权重值. 在如此规模...翻译 2018-07-13 17:35:07 · 534 阅读 · 0 评论