数学原理:
标定中棋盘格角点像素坐标(u, v)和世界坐标(XW, YW, ZW)是已知的,根据方程的参数值用最小二乘法得出其他未知量的值。
式中内参矩阵参数:
fx:在像素坐标系x轴方向上一相机焦距f占有的像素数,fy同理
内参矩阵第一行第二列有一元素s表示相机倾斜度(这个真假性还需细究,暂时理解成如此)
(u0,v0):相机主点在像素坐标系中坐标
外参矩阵参数:
R,T分别表示摄像头相机坐标系与世界坐标系(棋盘格世界坐标系)之间的旋转与平移矩阵。
于是在相机坐标系中有f/Z=(xl-xr)/B,即Z=fB/d, d=xl-xr,
fx=f/dx,dx=d/dx,于是fx取自内参,dx直接计算同一点在两张图像中像素x值之差即可,B和平移矩阵有关系。于是根据标定得出物体点的深度信息。
畸变参数原理见《基于RCF边缘检测和双目视觉的箱体体积测量算法》论文阅读笔记第一条或者博客opencv中标定函数calibrateCamera
-------------------------------------2020.3.23--------------------------------------
今天手写对四个坐标系推理的过程
以上物理量符号参考自机器视觉学习笔记(4)——单目摄像机标定参数说明