【算法 & 高级数据结构】树状数组:一种高效的数据结构(二)

🚀个人主页为梦而生~ 关注我一起学习吧!
💡专栏算法题基础算法数据结构~赶紧来学算法吧
💡往期推荐
【算法基础 & 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理)
【算法基础】深搜
数据结构各内部排序算法总结对比及动图演示(插入排序、冒泡和快速排序、选择排序、堆排序、归并排序和基数排序等)
【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)

上一篇文章我们介绍了树状数组这个数据结构,并且进行了其原理的数学推导,这篇文章基于上一篇文章,来讲一下这个数据结构在算法题中的应用

还不知道树状数组是什么的来看这篇文章:【算法 & 高级数据结构】树状数组:一种高效的数据结构(一)

题目来源:AcWing



0 通用模板

首先,通用模板先摆上

//lowbit
int lowbit(int x){
	return x & -x;
}

//修改操作
void add(int x, int c){
    for(int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}

//查询操作
int sum(int x){
    int res = 0;
    for(int i = x; i; i -= lowbit(i)) res += tr[i];
    return res;
}

1 单点修改,区间求和

  • 例题
    在这里插入图片描述

输入格式
第一行一个数 n n n

第二行是 n n n
个数,分别代表 y 1 , y 2 , … , y n y_1,y_2,…,y_n y1y2,,yn

输出格式
两个数,中间用空格隔开,依次为 V 的个数和 的个数。

数据范围
对于所有数据, n ≤ 200000 n≤200000 n200000,且输出答案不会超过 int64。
y 1 ∼ y n y_1∼y_n y1yn 1 1 1 n n n 的一个排列。

输入样例

5
1 5 3 2 4

输出样例

3 4
  • 主要思路

因为两个符号的特点对应的每个点的纵坐标有这样的特点: V 意味着两边点的纵坐标高于当前点的纵坐标, 意味着两边的纵坐标小于当前的纵坐标。所以我们只需要遍历两次数组,记录每个点左右高于或低于当前点的纵坐标的点的数量,然后利用排列组合,计算出总数。

以下题解来源:https://www.acwing.com/solution/content/13818/

  1. 从左向右依次遍历每个数a[i],使用树状数组统计在i位置之前所有比a[i]大的数的个数、以及比a[i]小的数的个数。
    统计完成后,将a[i]加入到树状数组。
  2. 从右向左依次遍历每个数a[i],使用树状数组统计在i位置之后所有比a[i]大的数的个数、以及比a[i]小的数的个数。
    统计完成后,将a[i]加入到树状数组。
  • 代码
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;

typedef long long LL;

const int N = 200010;
int n;
int a[N], tr[N];
int Greater[N], Lower[N];

int lowbit(int x){
    return x & -x;
}

//修改操作
void add(int x, int c){
    for(int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}

//查询操作
int sum(int x){
    int res = 0;
    for(int i = x; i; i -= lowbit(i)) res += tr[i];
    return res;
}

int main(){
    cin >> n;
    
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
    
    //将区间分成n份,看每一份左边有多少个大于它和小于它的
    for(int i = 1; i <= n; i++){
        int y = a[i];
        Greater[i] = sum(n) - sum(y);
        Lower[i] = sum(y - 1);
        add(y, 1);
    }
    
    //memset一下tr数组,倒着求每一份右边有多少个小于和大于它的
    memset(tr, 0, sizeof(tr));
    LL res1 = 0, res2 = 0;
    for(int i = n; i; i--){
        int y = a[i];
        res1 += Greater[i] * (LL)(sum(n) - sum(y));
        res2 += Lower[i] * (LL)sum(y - 1);
        add(y, 1);
    }
    
    cout << res1 << " " << res2 << endl;
    
    return 0;
}

2 区间增减,单点查询

主要思想:建立差分数组

  • 例题

在这里插入图片描述
数据范围
1 ≤ N , M ≤ 1 0 5 , 1≤N,M≤10^5, 1N,M105,
∣ d ∣ ≤ 10000 , |d|≤10000, d10000,
∣ A [ i ] ∣ ≤ 1 0 9 |A[i]|≤10^9 A[i]109

输入样例

10 5
1 2 3 4 5 6 7 8 9 10
Q 4
Q 1
Q 2
C 1 6 3
Q 2

输出样例

4
1
2
5
  • 主要思路

树状数组每次修改对应的是某个范围的前缀和的值的修改,所以如果需要在大数据量的情况下进行区间修改操作,大概率会TLE的。

但是我们想到,区间操作我们可以利用最基础的差分,使得区间操作优化成 O ( 1 ) O(1) O(1)的复杂度。

可以看到,将题目在原始组上的操作,转换到差分数组上,和树状数组解决的问题一致。

  • 代码
#include<iostream>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N = 100010;
int tr[N], a[N];
int n, m;

int lowbit(int x){
    return x & -x;
}

void add(int x, int c){
    for(int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}

LL quary(int x){
    LL res = 0;
    for(int i = x; i; i -= lowbit(i)) res += tr[i];
    return res;
}

int main(){
    cin >> n >> m;
    
    for(int i = 1; i <= n; i++){
        cin >> a[i];
        add(i, a[i] - a[i - 1]);
    }
    
    while(m--){
        char op;
        cin >> op;
        
        if(op == 'C'){
            int l, r, d;
            cin >> l >> r >> d;
            add(l, d), add(r + 1, -d);
        }else{
            int x;
            cin >> x;
            cout << quary(x)<< endl;
        }
    }
    
    return 0;
}

3 区间增减,区间求和

主要思想:建立差分数组+公式

  • 例题

在这里插入图片描述
数据范围
1 ≤ N , M ≤ 1 0 5 , 1≤N,M≤10^5, 1N,M105,
∣ d ∣ ≤ 10000 , |d|≤10000, d10000,
∣ A [ i ] ∣ ≤ 1 0 9 |A[i]|≤10^9 A[i]109

输入样例

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

输出样例

4
55
9
15
  • 主要思想

上一个应用虽然利用差分数组解决了区间操作的问题,但是区间操作完之后,利用差分数组不利于进行区间查询,所以需要进行一些推导,看看有什么性质可以利用。

数学推导见如下题解:https://www.acwing.com/solution/content/44886/
因此只需维护两个树状数组即可
一个是差分数组d[i]的树状数组tr[i],还有一个是i*d[i]的树状数组tri[i]

  • 代码
#include<iostream>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N = 100010;
int a[N];   
LL tr1[N], tr2[N];  //tr1[i] : b[i]的前缀和  tr2[i] : i * b[i]的前缀和
int n, m;

int lowbit(int x){
    return x & -x;
}

void add(LL tr[], int x, LL c){
    for(int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}

LL quary(LL tr[], int x){
    LL res = 0;
    for(int i = x; i; i -= lowbit(i)) res += tr[i];
    return res;
}

LL prefix_sum(int x){
    return quary(tr1, x) * (LL)(x + 1) - quary(tr2, x);
}

int main(){
    cin >> n >> m;
    
    for(int i = 1; i <= n; i++){
        cin >> a[i];
        int b = a[i] - a[i - 1];
        add(tr1, i, (LL)b);
        add(tr2, i, (LL)i * b);
    }
    
    while(m--){
        char op;
        cin >> op;
        
        if(op == 'C'){
            int l, r, d;
            cin >> l >> r >> d;
            add(tr1, l, (LL)d), add(tr1, r + 1, (LL)-d);
            add(tr2, l, (LL)l * d), add(tr2, r + 1, (LL)(r + 1) * -d);
        }else{
            int l, r;
            cin >> l >> r;
            cout << prefix_sum(r) - prefix_sum(l - 1) << endl;
        }
    }
    
    
    return 0;
}
评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

为梦而生~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值