机器学习
菜椒爱菜鸟
这个作者很懒,什么都没留下…
展开
-
深度学习服务器ubuntu操作管理手册
实验室服务器操作指南深度学习服务器ubuntu操作管理手册深度学习服务器ubuntu操作管理手册#服务器管理员操作步骤:*当前情况:1.服务器系统盘装在名为计算机的Ext4(233.2GB),还有文件盘2T的机械硬盘挂载在/mnt/2T下,用图形界面查看名为2TDISK,要求每个用户必须在/mnt/2T 下创建个自己的目录统一管理。2.存在两个组,学生组STUDENT,老师组TEACHER,老师组是管理员权限 ,在/mnt/2T 有额外的acl权限rwx*添加用户到系统,并可以使用xrdp远程控原创 2022-05-17 09:21:23 · 600 阅读 · 0 评论 -
tensorflow2 keras 深度学习 loss为NA,accuracy为NA
tensorflow2 keras 深度学习 loss为NA,accuracy为NA解决方法:1.检查数据集是否有缺失值2.检查神经网络的参数和框架(这里一般不会存在问题,除非有用自定义的函数)3.检查分类:我就是错在这里,15分类,在打标签的时候,数值从1开始了,这样是不允许的,必须从0开始...原创 2021-12-23 16:24:46 · 774 阅读 · 0 评论 -
tensoflow2.0处理图像
tensorflow处理图像知识点:1.读取数据使用tf.data2.模型生成使用函数式api3.多线程用evaluate对数据进行评估# !/usr/bin/python# -*- coding: utf-8 -*-# @Time : 2021/11/2 20:32# @Author : 郑浩鑫# @Email : [email protected]# @File : class1.py# @Software: PyCharm'''图像的操作:1.图片的读取原创 2021-11-03 17:08:49 · 198 阅读 · 0 评论 -
tensorflow标签向量化
有时候在处理数据的时候,必须将标签转换为张量,才能使用tensorflow的框架方法1.将标签列表转换为整数张量import numpy as npdef vectorize_sequences(sequences, dimension=10000): results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results[i, sequence] = 1. re原创 2021-09-18 19:36:53 · 1129 阅读 · 0 评论 -
tensorflow实现resnet-32残差卷积网络
40行代码解决残差网络,觉得牛逼的点赞from tensorflow import kerasfrom tensorflow.keras.layers import *from tensorflow.keras.models import *from tensorflow.compat.v1 import ConfigProtofrom tensorflow.compat.v1 import InteractiveSession#限制显存的使用config = ConfigProto原创 2021-09-14 16:01:37 · 724 阅读 · 0 评论 -
机器学习实战第二版---第八节:tensorflow数据预处理
数据预处理import tensorflow as tffrom tensorflow import kerasimport tensorflow.keras.backend as Kimport numpy as npX = tf.range(10)dataset = tf.data.Dataset.from_tensor_slices(X)#在RAM中完全创建一个数据集 获取0-9的张量for i in dataset: print(i)print(dataset,'\n')原创 2021-09-12 21:51:11 · 450 阅读 · 0 评论 -
pandas滑动窗口
'''滑动窗口'''close_px_all = pd.read_csv('./stock_px_2.csv',parse_dates=True, index_col=0)close_px = close_px_all[['AAPL', 'MSFT', 'XOM']]close_px = close_px.resample('B').ffill()#工作日向下填充(用前一个非缺失值去填充该缺失值)print(close_px)close_px.AAPL.plot()'''rolling可以原创 2021-09-11 17:11:22 · 461 阅读 · 0 评论 -
python显示当前时间
from datetime import datetimefrom dateutil.parser import parseimport pandas as pd#查看当前时间now = datetime.now()print(now.year,now.month,now.day)#当前时间#时间差delta = datetime(2020,1,1)-datetime(2010,1,1)print(delta)#字符串与时间互换stamp = datetime(2011,1,2)p原创 2021-09-11 10:54:35 · 2324 阅读 · 0 评论 -
机器学习实战第二版---第七节:tensorflow
7.1张量a=tf.constant([[1.,2.,3.],[4.,5.,6.]])#matrixprint(a)b=tf.constant(42)#创建一个常量tensorprint(b.dtype)#看类型print(a[:,1:])#切片a@print(a+10)#+10python自动会广播print(tf.square(a))#平方print(a@tf.transpose(a))#转置 @ @运算符是在Python 3.5中添加的,用于矩阵乘法,等效于调用tf.matmul(原创 2021-09-09 19:11:32 · 189 阅读 · 0 评论 -
机器学习实战第二版---第六节:神经网络调参
对于解决梯度爆炸和梯度消失使用Glorot和Bengio在它们的论文中提出了一种能显著缓解不稳定梯度问题的方法。使用keras的代码,可以达到以上两个效果并且加速!,图片显示的对于不同激活函数选择的初始化参数不同# 缓解梯度不稳定的问题,kernel_initializer='he_nomal'----可以加速'''并且对于不同的激活函数针对他们的方差使用fanavg还是fanin'''Dense(30,activation='relu',kernel_initializer='he_noma原创 2021-09-07 17:03:16 · 156 阅读 · 0 评论 -
机器学习实战第二版---第五节:神经网络
环境搭建使用anaconda搭建tensorflow2.0的环境,创建第一个模型,使用keras学习库中的序贯模型1.了解keras原创 2021-09-04 17:08:19 · 1485 阅读 · 0 评论 -
机器学习实战第二版---第四节:支持向量机SVM
SVM前言--使用SVM一般套路线性SVM非线性SVMSVM回归前言–使用SVM一般套路svm是在机器神经网络没有火之前,永远嘀神,对于svm的使用只要按照以下手法:#使用svm一般套路:先线性核函数-》如果训练集不大试一试RBF-》还可以使用交叉验证和网格搜索尝试其他核函数‘’’有这么多的核函数,该如何决定使用哪一个呢?有一个经验法则是,永远先从线性核函数开始尝试(要记住,LinearSVC比SVC(kernel=“linear”)快得多),特别是训练集非常大或特征非常多的时候。如果训练集不太大原创 2021-07-17 11:43:00 · 250 阅读 · 0 评论 -
机器学习实战第二版---第三节:回归
回归---线性回归、全局(批量)回归、随机回归、小批量回归线性回归批量回归随机回归线性回归线性回归类似一次函数去逼近w0,w1##用轮子lin_reg = LinearRegression()lin_reg.fit(x, y)#输出线性回归的截距和各个系数print('截距',lin_reg.intercept_) #intercept_ 偏 差 项print('各个系数',lin_reg.coef_)#特 征 权 重(coef_)#评价手段#最小二乘法theta_best_svd原创 2021-07-15 17:02:40 · 178 阅读 · 0 评论