Python计算统计分析MSE 、 RMSE、 MAE、r2

平均绝对误差

(MAE)Mean Absolute Error,是绝对误差的平均值,能更好地反映预测值误差的实际情况.
MAE

均方误差

MSE(mean-square error) 该统计参数是预测数据和原始数据对应点误差的平方和的均值
MSE

均方根误差

Root Mean Square Error求均方误差的根号
RMSE

决定系数R2

决定系数R2(coefficient of determination),也称判定系数或者拟合优度。它是表征回归方程在多大程度上解释了因变量的变化,或者说方程对观测值的拟合程度如何。拟合优度的有效性通常要求:自变量个数:样本数>1:10。

决定系数R2
所以要想决定系数R2越接近1,必须满足MSE越小,也就是真实值与预测值相差不大,也就是模型拟合程度高,同时var方差越大,也就是我们的样本离散程度大,对应的我们实际采样过程中,就是要求样本是随机性,以及全面性,覆盖度广

注意

决定系数适用于线性回归,单变量或者多元线性;y=ax或者y=ax1+bx2…;拟合模型是非线性的,不能用决定系数来评价其拟合效果,例如:BP神经网络
当拟合程度不行,可以调整参数或者权重-例如a,b,使预测值与真实值越接近

方差

方差(variance)的计算公式:S²=1/n [(x1-X)²+(x2-X)²+(x3-X)²+…(xn-X)²] (X表示平均数)。
方差在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度
统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。

代码实现

#导入相应的函数库
from sklearn import datasets
from sklearn.model_selection import train_test_split
from skle
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值