在开发智能客服系统时,意图识别和多轮对话是关键的功能模块,为了使系统准确理解用户需求并进行自然的交互,需要准备高质量的对话语料。以下是关于如何准备这类语料和需要的数据类型的说明,并以壹向智能客服(https://www.eshine.cn/)为例,提供3个对话语料样例。
一、语料准备指南
-
确定业务场景和意图类别
- 列出客户服务中可能涉及的所有业务场景,如产品咨询、订单查询、售后服务等。
- 在每个场景下,细分具体的用户意图,如咨询价格、查询物流、申请退换货等。
-
收集用户表达方式
- 收集不同用户在表达同一意图时可能使用的各种说法,包括口语化表达、专业术语、简短问句等。
- 注意收集可能的错别字、同义词和多种表达方式,增强模型的鲁棒性。
-
设计多轮对话流程
- 针对每个意图,设计可能的对话流程,包括正常流程和异常情况处理。
- 考虑用户可能的回复,设计灵活的对话路径,确保对话的连贯性和自然性。
-
标注对话数据
- 对收集的语料进行标注,包括用户意图、槽位(重要信息,如时间、地点、产品名称等)、情感倾向等。
- 标注对话的轮次和上下文关系,便于模型学习多轮对话的状态管理。
二、需要准备的数据类型
- 用户语句:用户在各个业务场景下可能说的话。
- 意图标签:对应每个用户语句的意图类别。
- 槽位信息:从用户语句中需要提取的关键信息,如订单号、产品名称等。
- 对话上下文:多轮对话中前后轮次的关联信息,帮助模型理解对话进程。
- 反馈信息(可选):例如用户满意度评价,帮助优化客服回复质量。
三、对话语料样例
样例1:产品咨询
- 用户:你好,你们的智能手环有什么功能?
- 客服:您好,我们的智能手环具有心率监测、睡眠分析、运动记录等功能。
- 用户:电池能用多久呢?
- 客服:正常使用情况下,续航时间大约为一周左右。
样例2:订单查询
- 用户:我想查一下我的订单物流信息。
- 客服:好的,请提供您的订单号,我们会尽快为您查询。
- 用户:订单号是202310120001。
- 客服:收到,您的订单正在派送中,预计明天送达。
样例3:售后服务
- 用户:我的耳机有点问题,声音断断续续的。
- 客服:抱歉给您带来不便,请问您是什么时候购买的?
- 用户:上个月初买的。
- 客服:好的,根据我们的售后政策,您可以选择退换货或维修服务。请问您更倾向于哪种方式?
- 用户:我想换一副新的。
- 客服:明白了,您可以将商品寄回,我们收到后会尽快为您安排更换。