
大数据与AI
文章平均质量分 79
大数据与AI学习与记录
PersistDZ
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数据统计的意义:钱包余额变动
钱包余额变动统计通过数据可视化实现资金流动的透明化管理,其核心价值体现在五个维度:财务健康诊断、决策支持系统、风险防控机制、商业价值挖掘和合规管理需求。具体包括资金流动可视化、收支结构分析、预算编制依据、资金规划优化、异常交易监控、流动性风险评估、用户行为分析、产品迭代依据、审计追踪和税务申报支持。实施建议包括建立三级监控体系,实时监控大额交易、分析当日收支平衡状态和生成完整月报系统。通过这种结构化分析,某电商平台在实施后6个月内显著提升了应收账款周转效率、减少了营运资金需求并降低了客户投诉率。原创 2025-05-09 17:35:48 · 691 阅读 · 0 评论 -
数仓建设:日期维度表
(Date Dimension Table)是用于支持时间相关分析的核心工具,通常包含日期、年、月、周、季度、节假日标志等字段。通过上述方法,可快速生成灵活、可扩展的日期维度表,支撑复杂的时序分析需求。根据业务需求,生成足够覆盖历史数据和未来预测的日期范围(如。使用SQL或编程语言生成连续的日期序列。原创 2025-04-07 00:45:00 · 566 阅读 · 0 评论 -
手机点餐领域餐品和规则分别SPU和SKU
通过明确 SPU 和 SKU 的职责,可高效管理商品、库存和订单,避免价格或库存逻辑错误。➔ 生成唯一 SKU,价格 = 基础价 +3(杯型) +2(加料)。类似,但餐饮场景有独特的表现形式。是商品的标准单元,表示一个“品类”或“商品原型”。是库存管理的最小单元,表示一个商品的具体规格组合。在手机点餐领域(如美团、饿了么等平台),是商品管理的核心概念,与电商中的。原创 2025-04-07 00:45:00 · 955 阅读 · 0 评论 -
数仓建模中计算累计销量
直接在查询时使用窗口函数,按时间顺序累加销量。适用于小数据量或实时性要求高的场景。使用数据库的物化视图(Materialized View)自动维护累计销量。根据业务需求和数据规模选择合适方案,并在计算效率与存储成本之间权衡。设计合理的模型与计算逻辑。提前计算每日累计销量并存储到汇总表中(如。在数仓建模中计算累计销量,通常需要结合。:依赖数据库特性,可能增加存储成本。:自动刷新,平衡性能与实时性。累计销量的计算通常基于。:大数据量时性能较差。:需要维护ETL任务。:灵活,无需预计算。原创 2025-04-04 19:11:18 · 617 阅读 · 0 评论 -
ECharts 中轴的分类及常见使用场景
在 ECharts 中,轴(Axis)的类型和组合方式非常灵活,可以适应多种图表需求。通过灵活组合轴和坐标系,ECharts 可以覆盖绝大多数数据可视化需求。原创 2025-03-31 20:29:26 · 1191 阅读 · 0 评论 -
图表配置表增加分析指标字段
Metricname: "用户增长分析",displayName: "较年初增长率",params: {basePeriod: "2024-01", // 指定对比基准为2024年1月unit: "%"原创 2025-04-02 00:15:00 · 410 阅读 · 0 评论 -
图表配置方案:同时展示当前数值、同比数值、同比增长率
以下是针对。原创 2025-04-02 01:00:00 · 554 阅读 · 0 评论 -
报表图表配置表的设计思路、数据转换、动态配置与多维度扩展
在报表图表配置表方案设计中,通过新增一个用于存储数据比较类型的字段(例如或),可以使系统支持同比、环比等常见的数据对比分析,并为未来扩展累计、预测、基准等指标预留灵活性。整个方案从数据预处理、转换规则到图表配置和用户交互形成了一个闭环,既满足企业对报表定制化需求,又兼顾了系统的扩展性和易用性。这样的设计方案不仅便于数据分析人员和报表设计人员理解和使用,还能适应业务的不断变化,助力企业实现数据驱动的决策支持。原创 2025-04-01 00:45:00 · 856 阅读 · 0 评论 -
数仓建模和标签体系之间存在着密切的依赖关系
在数仓中,基础数据经过建模后可以直接生成基础标签(例如用户的基本属性),同时也能利用统计、聚合以及机器学习方法从这些基础数据中推导出衍生标签(如用户活跃度、购买力等)。总体来说,数仓建模提供了数据治理和存储的坚实基础,而标签体系则是借助这一基础,将海量数据抽象成具有业务意义的指标,两者相辅相成,共同支持企业的数据驱动决策。标签体系通过将复杂的数仓数据转化为易理解、便于查询和应用的标签,为企业提供了直观的用户画像、产品特征和其他业务指标,帮助决策、精准营销和个性化推荐。原创 2025-03-14 17:43:50 · 232 阅读 · 0 评论 -
智能客服意图识别与多轮对话的语料准备
您提到的强光场景下屏幕显示问题,XX手机采用AMOLED屏,支持最高1500尼特亮度,户外使用清晰度较好。:已记录,请上传商品照片至“我的订单-售后服务”,审核通过后我们将安排取件。:Y型号电池容量为4800mAh,快充功率相同。:可能是光猫故障,已为您预约工程师上门检测,请确认地址:XX市XX区XX路XX号。:电池容量为5000mAh,支持66W快充。:若确认质量问题,运费由我们承担,退货时会自动生成免运费标签。:退货申请 → 原因说明 → 流程确认 → 费用咨询。:已查询到您的订单,退货原因为?原创 2025-03-20 00:30:00 · 583 阅读 · 0 评论 -
智能客服系统意图识别和多轮对话高质量对话语料的准备
是关键的功能模块,为了使系统准确理解用户需求并进行自然的交互,需要准备高质量的对话语料。以下是关于如何准备这类语料和需要的数据类型的说明,并以壹向智能客服()为例,提供3个对话语料样例。在开发智能客服系统时,原创 2025-03-14 11:30:50 · 573 阅读 · 0 评论 -
智能客服意图识别和多轮对话语料准备
以上语料样例不仅包含了用户意图和对应回答,还记录了对话的多轮交互细节,能够帮助训练系统更好地进行意图识别和上下文理解。通过不断丰富和完善这些对话数据,智能客服系统能更准确地捕捉用户需求并提供及时、准确的反馈。原创 2025-03-14 11:15:05 · 389 阅读 · 0 评论 -
知识库在意图识别中扮演着**数据支撑**和**语义理解辅助**的双重角色
知识库是意图识别的**“数据燃料”原创 2025-03-19 05:00:00 · 712 阅读 · 0 评论 -
智能客服数据分析与预处理
对话拆分与整合客服记录往往包含多轮对话。需要对多轮对话进行整合,构造单轮问答对或多轮对话样本(可根据具体模型设计选择格式)。文本总结针对长对话,可以提取关键内容或总结用户需求,形成简洁的问答对。这一步可以借助大语言模型生成摘要,但需要后续人工验证。示例思路# 如果数据中有对话轮次,可以将连续对话合并,或提取最后用户问题作为训练样本。采集与探索→ 2.清洗去噪→ 3.人工或自动标注意图/槽位→ 4.结构化与多轮对话整合→ 5.数据增强→ 6.数据集划分与格式转换→ 7.质量检查与反馈优化。原创 2025-03-19 00:30:00 · 1562 阅读 · 0 评论 -
重复内容或相似回答对AI匹配准确性的影响
大量重复或相似的内容会使模型在进行文本向量化和相似度计算时,难以提取出真正区分不同问题的细微特征,从而影响匹配的准确性。而数据源通常是 FAQ、客服历史回答以及实时的用户交互数据,匹配原理则基于文本向量化和语义相似度计算,通过深度学习模型来实现高效的文本匹配。原创 2025-03-19 01:00:00 · 805 阅读 · 0 评论 -
关于FAQ或客服回答中重复内容对AI匹配的影响
建议通过定期(建议每月)执行数据质量评估,使用困惑度(Perplexity)和语义熵(Semantic Entropy)指标监控系统表现,当检测到指标波动超过15%时触发自动优化流程。这种技术机制的本质是通过消除数据噪声来提升语义空间的判别性,类似于在搜索引擎中处理重复网页的原理,但需要结合对话系统的即时响应特性进行专门优化。原创 2025-03-18 03:45:00 · 687 阅读 · 0 评论 -
FAQ 是什么?是知识库还是客服问答记录?
4️⃣ 如果 FAQ 无匹配,AI 可以参考。,但 FAQ 可能来自客服问答的总结归纳。让我们详细拆解它的概念和区别👇。2️⃣ AI 检索 FAQ,匹配到。3️⃣ 提供 FAQ 答案。,但不完全等同于知识库。原创 2025-03-18 00:30:00 · 1901 阅读 · 0 评论 -
Python 常用数据分析组件(库)大全
🚀 掌握这些 Python 数据分析库,能让你的分析更。Python 在数据分析方面有许多强大的库,涵盖。以下是 Python。,如果处理海量数据,建议使用。,按照不同用途分类汇总。原创 2025-03-17 17:15:00 · 1009 阅读 · 0 评论 -
Dify 重新进入管理员密码设置页面
如果你(例如通过.env方式自动创建),那么默认情况下。但是,你仍然可以使用以下方法重置管理员用户名 & 密码。如果你希望,可以删除数据库中的所有用户数据。1️⃣dify-db是 PostgreSQL 数据库容器的名称,替换为实际名称)2️⃣这将清空,使得 Dify 重新进入。3️⃣4️⃣如果你不想删除管理员用户数据,但希望更改管理员的用户名(Email)或密码,可以。原创 2025-03-16 04:00:00 · 7541 阅读 · 2 评论 -
Dify 的部署方式 & 知识库配置
【代码】Dify 的部署方式 & 知识库配置。原创 2025-03-15 00:45:00 · 857 阅读 · 0 评论 -
智能客服系统中向量索引数据表和知识库的关系
既有关系,但它们并不完全是同一个概念或同一份数据,而是相辅相成的。,以保证客服回答的准确性和实时性。在智能客服系统中,通常会。原创 2025-03-14 03:45:00 · 718 阅读 · 0 评论 -
AI 客服优化方案
优化 AI 客服系统的是:✅(减少 AI 生成错误答案)✅(避免机械回复)✅(自动处理常见问题)✅(接口支持 Web、App、微信等)📌 本文提供。原创 2025-03-14 00:15:00 · 845 阅读 · 0 评论 -
具体部署 Fine-tuning 训练 (微调大模型)
具备更强的行业知识、更精准的对话风格,甚至完全匹配私有数据,比如。(如电商、新品信息),通常不会进行 Fine-tuning,而是用。,既可以优化客服 AI 的基础知识,又能保持最新 FAQ 信息。微调(Fine-tuning)可以让你的。执行后会检查数据格式,确保数据合法。在选择微调方案时,要考虑。这样,生成的回答会基于。原创 2025-03-13 00:30:00 · 1049 阅读 · 0 评论 -
智能客服大模型微调
上表现更好,那么微调(Fine-tuning)可以让 AI 更加专注于你的业务场景,比如。这样,AI 既可以调用最新的知识库,又可以微调固定的 FAQ 问答。OpenAI 会自动检查数据格式,如果没有问题,就可以上传训练。如果你使用 OpenAI 的 GPT 模型,你可以通过。进行微调并训练模型,微调后可得到一个专属客服模型。:调整 AI 回答口吻,让它更符合品牌要求(如。:让 AI 熟悉特定公司产品,而不是泛泛地回答。的问题,让它根据公司知识库回答。要微调一个客服大模型,你需要。:让 AI 更好地回答。原创 2025-03-12 11:48:03 · 1156 阅读 · 0 评论 -
智能客服系统知识库数据清洗
数据清洗(Data Cleaning)是确保智能客服知识库高效运行的重要环节,主要涉及。| 分类 & 标签优化 | 重新组织 FAQ,创建关键字索引 || 定期更新 | 结合用户反馈,每 1-3 个月优化 |才能提供更优质、正确的回答,提升客户满意度!、Zendesk、Intercom 等)中,: FAQ 或客服回答中可能存在。,会影响 AI 匹配的准确性。是一个持续优化的过程,原创 2025-03-12 11:43:34 · 1599 阅读 · 0 评论 -
大数据模式下如何抽取PG的视图、物化视图和存储过程
PG 视图同步方式:执行视图查询,抽取数据 → 使用 ETL 工具加载到大数据存储。PG 物化视图同步方式:直接将物化视图当作数据源抽取数据 → 类似于同步普通表,可定期刷新确保数据新鲜度。PG 存储过程处理方式:存储过程不直接作为数据同步对象,若需要在大数据系统中应用其逻辑,则需重新实现业务逻辑。通过上述方法,你可以根据不同需求和场景,将 PostgreSQL 中的查询结果数据有效地同步到大数据存储中,同时对于业务逻辑(存储过程),需要在大数据环境中考虑合适的重构方案。原创 2025-02-26 02:45:00 · 366 阅读 · 0 评论 -
大数据模式下可以同步视图的数据到大数据存储中吗?
🔹 适用场景:当 MySQL 视图数据已经同步到 Hive、ClickHouse、Doris 等,直接在目标端创建视图。MySQL 视图不会触发 CDC(Change Data Capture),但可以通过监听。MySQL 视图的数据到大数据存储(如 Kafka、Hudi、Iceberg)。是可以的,但视图本身并不存储数据,而是基于基础表的查询。🔹 适用场景:定期同步,适用于批量数据分析场景。的变更,并在大数据存储端重建视图查询。原创 2025-02-25 17:58:23 · 675 阅读 · 0 评论 -
DeepSeek接入大数据能做什么
这种深度整合大数据与AGI技术的解决方案,正在重塑能源、金融、制造等关键领域的决策范式,推动企业从数据驱动向认知智能转型。原创 2025-02-18 10:13:28 · 1088 阅读 · 0 评论 -
数据仓库复用性:业务需求复用性设计
数据仓库的业务需求复用性设计是提升数据架构灵活性和扩展性的关键部分。原创 2025-01-18 00:15:00 · 361 阅读 · 0 评论 -
数据仓库的复用性:流程层面
是提高开发效率和数据质量的关键。通过标准化ETL流程、模块化设计,以及实时与离线共用的架构,可以最大化数据处理流程的复用性,降低复杂度。以下是详细的介绍和落地方案。通过以上方法,可以有效提升数据仓库在流程层面的复用性,降低开发成本,同时支持实时与离线的多场景需求。将ETL流程中的功能逻辑拆分为可复用的模块。通过抽象逻辑统一实时与离线的处理框架。原创 2025-01-18 00:00:00 · 1068 阅读 · 0 评论 -
数据仓库的复用性:模型层面通用指标体系、参数化模型、版本化管理
是一个关键原则,它不仅能提升数据资产的使用效率,还能降低开发成本、优化系统运维。将数据处理逻辑中可变的部分参数化,如时间范围、过滤条件。四个方面进行详细介绍,并提供可落地的设计方案。原创 2025-01-17 00:15:00 · 1680 阅读 · 0 评论 -
数据仓库复用性:分层架构详细介绍和方案
分层架构设计通过解耦数据处理过程和分工明确的分层模型,实现了数据仓库的复用性、高效性和可扩展性。在实际应用中,结合业务需求、数据量和技术栈选择,能进一步优化性能和易用性。数据仓库的分层架构设计是实现数据复用性和灵活性的核心。以下是详细的设计方法和可实施的方案,结合实际案例,涵盖分层的目标、职责、数据组织方式以及适用场景。(Data Warehouse Summary,数据仓库汇总层)(Data Warehouse Detail,数据仓库明细层)多租户SaaS平台,为多个餐饮品牌提供数据分析服务。原创 2025-01-17 00:00:00 · 995 阅读 · 0 评论 -
数据仓库的复用性:主题域设计的详细方案
主题域设计是数据仓库建设的核心环节,其目标是提升数据复用性和共享性,降低开发和维护成本。在实施过程中,要结合具体业务场景合理划分域,并通过清晰的边界、标准化的接口和高效的数据治理机制,确保数据仓库的高质量和灵活性。与业务团队深入沟通,明确核心业务模块及关键数据需求。为每个主题域定义其管理的数据范围和边界,确保各主题域互不重叠但相互协作。将核心业务模块转换为主题域,每个主题域独立存放一个业务范围内的数据。在每个主题域中,按照数据仓库建模方法(例如。原创 2025-01-16 04:30:00 · 697 阅读 · 0 评论 -
数据仓库的复用性:主题域设计
主题域设计是数据仓库复用性设计的核心之一。主题域的合理设计能够帮助数据仓库适应不同业务场景,提高数据的共享性和复用性,从而减少重复建设。主题域是指根据企业的核心业务划分出的数据领域,用于将数据仓库中的数据按照业务逻辑进行分类组织。每个主题域涵盖某一特定业务范围的数据,例如销售、库存、财务、客户等。主题域设计是数据仓库复用性建设的重要基石。一个合理设计的主题域不仅能够帮助企业实现高效的数据管理,还可以为多场景、多业务提供坚实的数据支持。原创 2025-01-16 04:00:00 · 453 阅读 · 0 评论 -
数据仓库的复用性:数据标准和规范文档
数据仓库分层设计:原创 2025-01-16 03:45:00 · 844 阅读 · 0 评论 -
数据仓库的复用性:统一数据标准和规范
在大数据项目中,是构建高质量数据系统的重要基础。良好的数据标准可以提升数据的可用性、一致性和可靠性,同时降低系统复杂度,为后续的数据治理和分析奠定基础。原创 2025-01-15 23:23:44 · 1572 阅读 · 0 评论 -
数据仓库的复用性:设计和构建一个高复用性的数仓
数据仓库的复用性是指在数据仓库的设计和使用过程中,能够实现数据、模型、流程、工具等多个层面的重复利用,减少重复开发,提高开发效率,降低维护成本,并增强灵活性和可扩展性。原创 2025-01-15 22:59:54 · 1030 阅读 · 0 评论 -
如何构建和实现一个有效的标签体系
标签体系在数据架构中的作用非常重要,特别是在多租户、复杂数据环境中。通过合理设计和应用标签体系,不仅可以帮助数据分类、管理和权限控制,还能够提升数据质量、优化存储、加速数据查询和分析。好的,接下来我们可以更深入地探讨如何构建和实现一个有效的标签体系,并将其应用到你的数据架构中,特别是多租户的SaaS平台或大数据环境下。标签在数据质量管理中起到了分类和标记作用,帮助识别哪些数据需要处理,哪些数据符合质量要求。标签可以帮助数据存储和查询优化,特别是在大数据环境中,能够有效提升性能和节省存储资源。原创 2025-01-13 01:30:00 · 1519 阅读 · 0 评论 -
标签体系的应用场景、使用方式及其在最终数据应用中的作用
标签体系的应用非常广泛,它在数据治理、分析、存储优化以及业务决策支持中都起到了关键作用。以下是关于标签体系的应用场景、使用方式及其在最终数据应用中的不可或缺的作用的详细解读。原创 2025-01-13 01:15:00 · 2146 阅读 · 0 评论 -
标签体系与元数据管理的关系
是实现元数据管理的一种工具和方法。标签体系是为数据(如表、字段、数据源等)打上。标签体系与元数据管理密切相关,可以理解为。标签体系的目标是对数据进行。原创 2025-01-13 01:00:00 · 2807 阅读 · 0 评论