【Stable Diffusion】大模型/Lora触发词插件lora-prompt-tool

前言

又是一个神器,小伙伴们搬好小板凳,准备好我要开始了。

我们知道,在很多模型和lora使用的时候,是需要填写触发词的。比如这个盲盒lora,提示词就是“full body, chibi”,需要把这些触发词放到正向提示词里面才能达到想要的效果。

举个例子,当我们只引用lora,而不填入触发词的时候是这样的。

当我们填入特定的触发词之后,就达到了这个lora该有的效果。所以,有的时候你的成图效果不理想,有可能是因为你没有填写模型或lora的触发词。

但是,当你的模型和lora越来越多的时候,你还能记得它们的触发词吗?那肯定是不可能的。

这时候就需要我们的插件登场了,它就是——lora-prompt-tool

安装方式就是在扩展面板中点击“从网址安装”,然后输入以下地址https://github.com/a2569875/lora-prompt-tool,可以直接安装。

或者将我提供的插件文件夹复制到这个目录下“……\sd-webui-aki-v4\extensions”。

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

安装完成后,重启webUI,就装好了。

接下来,在你想要使用的lora上面点击右键,就可以看到它的触发词了,直接点击就能加载到正向提示词当中。

当然,并不是所有的模型或者lora都有触发词,这个时候你也可以手动编辑,给它加上你自定义的触发词。

不过,这些还不是这个插件最厉害的功能。

当我们浏览C站上这个模型/lora的主页的时候,是可以看到很多官方图的。

我们之前安装的C站助手插件,是可以将这张封面图的提示词一键导入到SD里面,这样可以帮助我们快速得到这个官方图片的效果。

而当我们安装了这个插件之后,我们就可以直接从这里看到官方的其他例图,并且可以一键将这张图所有的提示词和设置参数全部拷贝到SD中。

这样就能生成和官方图片差不多的效果了,大模型需要你自己选择好。当然这个操作的目的不是让你抄袭别人的图片,而是可以更好的学习到一些关键的提示词写法,达到事半功倍的效果。

以上就是关于大模型/Lora触发词插件lora-prompt-tool的介绍,有了它之后,我们就能更轻松的使用模型和lora了。

但由于AIGC刚刚爆火,网上相关内容的文章博客五花八门、良莠不齐。要么杂乱、零散、碎片化,看着看着就衔接不上了,要么内容质量太浅,学不到干货。

这里分享给大家一份Adobe大神整理的《AIGC全家桶学习笔记》,相信大家会对AIGC有着更深入、更系统的理解。

有需要的朋友,可以点击下方免费领取!
在这里插入图片描述

AIGC所有方向的学习路线思维导图

这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。如果下面这个学习路线能帮助大家将AI利用到自身工作上去,那么我的使命也就完成了:
在这里插入图片描述

AIGC工具库

AIGC工具库是一个利用人工智能技术来生成应用程序的代码和内容的工具集合,通过使用AIGC工具库,能更加快速,准确的辅助我们学习AIGC
在这里插入图片描述

有需要的朋友,可以点击下方卡片免费领取!
在这里插入图片描述

精品AIGC学习书籍手册

书籍阅读永不过时,阅读AIGC经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验,结合自身案例融会贯通。

在这里插入图片描述

AI绘画视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,科学有趣才能更方便的学习下去。

在这里插入图片描述

### Stable Diffusion LoRA 模型介绍 LoRA,即低秩适应(Low-Rank Adaptation),是一种用于大型语言模型微调的技术[^1]。该技术允许通过引入低维参数矩阵来高效地自定义预训练的大规模模型,而不需要重新训练整个网络结构。 对于图像生成领域而言,在Stable Diffusion框架下,LoRA表现为一种能够利用较少数据集快速适配特定风格或者概念的学习机制[^2]。这意味着开发者可以通过相对较小的努力让现有的扩散模型学会新的视觉特征,进而影响最终渲染出来的艺术作品样式。 具体来说,当涉及到实际操作层面时: - **安装配置**:为了使Lora模块正常工作于Stable Diffusion环境中,用户可能需要手动指定Lora权重文件的位置。这通常涉及查找并编辑软件内部的相关路径选项,确保程序可以从正确的地方加载所需的扩展资源[^3]。 - **训练过程**:尽管只需要有限数量的例子就能完成一次有效的迁移学习任务,但在准备阶段仍然建议精心挑选代表性样本作为输入素材。此外,合理设定超参数也是保障良好性能不可或缺的一环。 ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_id) # 加载LoRA权重到pipeline中 lora_path = "/path/to/lora/weights" # 替换为具体的LoRA权重路径 pipe.unet.load_attn_procs(lora_path) prompt = "A fantasy landscape with mountains and rivers." image = pipe(prompt).images[0] image.save("fantasy_landscape.png") ``` 上述代码片段展示了如何将预先训练好的LoRA权重应用于Stable Diffusion管道以生成基于提示词的艺术图像。 #### 注意事项 - 用户应当注意不同版本之间可能存在差异,因此务必确认所使用的文档资料与当前环境相匹配。 - 对于初次接触此类高级特性的新手来说,阅读官方指南以及参与社区讨论往往能提供宝贵的帮助和支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值