Stable Diffusion原作者再创业,文生图模型FLUX.1 效果超MJ v 6.0、DALL-E 3

前言

Black Forest Labs是一家由Stable Diffusion原创作者创立的初创公司,今天其发布了全新的 FLUX.1 文本到图像模型套件,为开源人工智能社区注入了新的活力。 这次发布标志着一个潜在的分水岭时刻,即容易获得且功能强大的生成式人工智能技术。

该公司由 Robin Rombach、Patrick Esser 和 Andreas Blattmann 领导,他们在潜在扩散模型方面的工作为Stable Diffusion奠定了基础,并影响了DALL-E 2、DALL-E 3,和Sora等模型的核心架构元素。

如今,Stable Diffusion已成为开源图像生成社区的中坚力量。 在 Hugging Face 上,下载次数最多的 10 个文本到图像模型中,有 9 个是基于Stable Diffusion的衍生模型。

目前该公司已获得 3100 万美元的种子资金。 a16z是本轮投资的领投,Brendan Iribe、Michael Ovitz和Garry Tan等知名人士也提供了额外支持。

Black Forest Labs的目标是为图像和视频开发尖端的生成式深度学习模型,同时优先考虑普及性和透明度。

FLUX.1: 挑战闭源巨头

FLUX.1 有三个变体:通过 API 提供的闭源 FLUX.1 [pro]、用于非商业用途的开放式 FLUX.1 [dev],以及根据 Apache 2.0 许可发布的用于个人和本地开发的更快版本 FLUX.1 [schnell]。

所有模型都拥有令人印象深刻的 120 亿个参数,并采用了多模态和并行Stable Diffusion模块的混合架构。 行业专家们很快就认识到了 FLUX.1 的潜在影响。

产品矩阵:

**FLUX.1 [pro] 😗*FLUX.1 中的佼佼者,提供最先进的图像生成性能,具有一流的提示跟踪、视觉质量、图像细节和输出多样性。 我们正在我们的应用程序接口中慢慢提升 FLUX.1 [pro] 的推理计算能力。

FLUX.1 [dev] 是一个面向非商业应用的开放式、经指导提炼的模型。 FLUX.1 [dev]直接从FLUX.1[pro]提炼而来,具有类似的质量和及时坚持的能力,同时比相同大小的标准模型更高效。

FLUX.1 [schnell] 是其最快模型,专为本地开发和个人使用而定制。 FLUX.1 [schnell] 在 Apache2.0 许可下公开发布。

上述模型均权重可在 HuggingFace 上获得,也可直接在Replicate 或 fal.ai 上试用。

虽然BFL计划提供付费 API 访问和定制企业解决方案,但他们将发布具有许可授权的核心模型。

这种策略有几个主要优势:

1、它能让社区探索更广泛的应用和用例;

2、它能提高模型的透明度和协作改进;

3、它能让外部研究人员分析模型,找出潜在的偏差或问题,从而建立信任和提高可靠性;

著名人工智能社区人士 Bindu Reddy 在 X.com 上发表文章,对FLUX.1 的发布表示欢迎。

"对于多模态人工智能来说,这真是一个令人惊叹的消息! 她在推特上写道:“向开源 AGI 迈进的步伐仍在继续,”

早期的演示表明,FLUX.1 的输出质量可以与 Midjourney v6.0 和 DALL-E 3 等流行的闭源模型相媲美,甚至有过之而无不及。

‍‍‍

图片中嵌入文字:

动漫+文字生成:

群体人物生成:

多人物特写:

创造力图像生成:‍‍‍‍

FLUX.1 发布的时机对开源人工智能至关重要。 Stable Diffusion 背后的公司 Stability AI 最近的动荡引发了人们对可访问的高质量图像生成模型的未来的担忧。

Black Forest Labs 进入这一领域可以重振开源 AI 生态系统,并有可能加速从图形设计到科学可视化等各个领域的创新。

伦理人工智能:

以负责任的方式开发生成模型

不过,这次发布会也将有关负责任的人工智能开发和部署的重要问题推到了风口浪尖。

BFL制定了严格的使用指南,禁止使用其技术生成虚假信息、未经同意的图像或任何可能伤害个人或团体的内容。

随着 FLUX.1 的发展,该公司对透明度和道德人工智能开发的承诺可能会面临严格审查。 FLUX.1 引入了多项技术创新。

这些模型采用了 “流匹配”,这是一种将扩散模型广义化的方法,并结合了旋转位置嵌入和并行注意力层,以提高性能和硬件效率。 这种方法在视觉质量、及时性和输出多样性方面都取得了令人印象深刻的成果。

FLUX.1 的影响可能远远超出人工智能研究界。 平面设计师、数字艺术家和创意专业人士可能会发现,该模型能够生成各种风格和宽高比的高质量图像,从而带来新的可能性。

此外,FLUX.1 [dev] 和 [schnell] 变体的开放性可能会引发各行各业新一轮的应用和集成浪潮。

从像素到视频:

对人工智能媒体未来的展望

Black Foest Labs已将目光投向下一个领域:最先进的文生视频。 在这一领域的成功将进一步巩固该公司作为生成媒体技术领导者的地位。

随着人工智能领域的快速发展,Black Forest Labs和 FLUX.1 的推出是强大人工智能工具民主化进程中的一个重要里程碑。 Black Forest Labs凭借其强大的技术基础、雄厚的资金和对可访问性的承诺,将在塑造生成式人工智能的未来方面发挥关键作用。

随着 FLUX.1 及其后续产品日趋成熟并进入更多应用领域,它们的影响可能会波及众多领域,并有可能改变我们创造视觉媒体并与之互动的方式。

写在最后

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

图片

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!

在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

这份完整版的AIGC全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值