前言
Stable Diffusion软件安装及使用教程
本文分三部分
一:安装教程
二:功能解答
三:使用技巧
(演示所使用的是秋叶整合包文末免费获取)
一,安装教程
下载安装包后,直接解压即可
所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~ 
(注:不要有中文路径)
二,软件使用
1:根目录下双击A绘世启动器.exe,等待加载完成
2:加载完毕后,进入高级选项,生成引擎N卡选择GPU,显存优化调整到符合自己电脑的
(AMD显卡(N卡忽略这里):设置配置模式调到专家-版本管理内核分支调成amd的主板,刷新更新后,高级选项生成引擎,调成第一个自己的,显存根据真实显存调整即可,环境维护-安装pyt为directml最新版即可,关掉重启,如果出现报错,就在环境维护中,安装单独的pip(有个D开头的),成功启动后,A卡也可以调用GPU进行绘画)
3:配置完后,点击控制台,一键启动,等待加载,加载完后会自动跳转网页
二:客户端问题解答
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Classifier Free Guidance scale(分类器自由指导比例)是一个参数,用于控制模型应尊重你的提示的程度。如果CFG值太低,稳定扩散将忽略你的提示。太高时图像的颜色会饱和。 1–大多忽略你的提示。 3–更有创意。 7–遵循提示和自由之间的良好平衡。 15–更加遵守提示,图片的对比度和饱和度增加。 30–严格按照提示操作,但图像的颜色会过饱和。 CFG在4-10之间都非常适合,但最佳的还是建议将迭代步数还有采样方法结合起来看。 |
|
|
|
|
| ClipSkip为1:处理到最后一层(即所有层) ClipSkip为2:处理到倒数第二层(忽略最后一层) ClipSkip为3:处理到倒数第三层(忽略最后和倒数第二层) 值较小,生成含有丰富提示词的插图;ClipSkip的值较大,生成忽略提示词的插图(被丢掉的提示词就越多) |
| 相片类的:LDSR(但速度很慢),或者ESRGAN_4x(如果你想要超级清晰的细节和/或速度)。 绘画类的:ESRGAN_4x(写实)提供高油漆纹理和细节,General-WDN提供更好的整体外观 动漫类的:Anime6B,也适合将某些东西变成动画。 |
| 方案:指的是两种算法以供选择; 覆盖图像尺寸:指的是能够做出超出原有SD模型的限制,做出更大的图像(比如类似于清明上河图的那种超宽影像) 潜空间分块宽/高度:就是那个图里面的小框宽高度,一般来说选64-160之间的值(最佳的数值选取其实取决于你选的潜空间分块单批数量,以及你所用模型的最佳生成图片大小【模型最好使用未剪枝的】,一般的建议选择是96或128) 潜空间分块单批数量:类似于生成图中的“单批数量”参数,这个看显卡性能,一般来说越大越快,这里的可供选择区间是1到8。 潜空间分块重叠:重叠数值提高会减少融合中的接缝。显然,较大的重叠值意味着更少接缝,但会显著降低速度,因为需要重新绘制更多的小块。(一般建议使用MultiDiffusion时选择32或48,使用MixtureofDiffusers选择16或32) |
| 这个是有关电脑性能的选项,勾选这个将会极大降低VAE编解大图所需的显存开销,几乎无成本的降低显存使用。以highres.fix为例,如果你之前只能进行1.5倍的放大,则现在可以使用2.0倍的放大。 不过一般来说你不需要更改默认参数,只有在以下情况下才需要更改参数: 一是当生成之前或之后看到CUDA内存不足错误时,请降低tile大小; 二是当你使用的tile太小且图片变得灰暗和不清晰时,请启用编码器颜色修复。 |
| 老牌采样器经典 Euler a (加a的是在每一次去操的时候增加一点新的噪点进去,每次生成都会变动,不收敛,去掉a的画面生成最后会趋近于稳定,可收敛) Euler DPM采样器 DPM2算法的画面有提升,但是时长增加一倍,不推荐, 带有Karras算法的采样器,8步后噪点更少,所以直接选择带有Karras的算法即可 2S和2M的区别:S代表单步算法,M代表多步算法增加了相邻层之间的信息传递,所以选择带有M算法的即可, 所以最后筛选: DMP++2M Karras 最推荐的算法,收敛,速度快,质量不错 DMP++SDE Karras 随机微分方程,不收敛,高品质,速度慢,真实系追求画面可以选 DMP++2M SDE Karras 2M和SDE的这种算法,不收敛,速度有所提升 DMP++2M SDE Exponential 指数算法,不收敛,细节少一些,但是画面更柔和干净, DPM++3M SDE Karras DPM++3M SDE Exponential 这两个3M速度和2M一样,需要更多采样步数,调低CFG采样步数>30步效果更好,也就是采样步数超过30,可以尝试使用这一类算法 2023采样器 Unipc 2023新采样器,统一预测矫正器,兼容性很好,收敛,10步左右就能生成可用画面 Restart 每步渲染时间长些,但只需很少的采样步数,就能生成质量相当不错的图片,有潜力 如果你想使用快速且质量不错的东西,那么最好的选择是DPM++2M Karras,UniPC 如果你想要高质量的图像并且不关心收敛,那么不错的选择是DPM++SDE Karras 如果你喜欢稳定、可重复的图像,请避免使用任何ancestral samplers(加a的东西)。 如果你喜欢简单的东西,Euler和Heun是不错的选择。 |
三:使用技巧及案例展示
|
| 1,画质词+画风词 2,画面主题描述 3,环境,场景,灯光,构图 4,lora 5,负面词 | |
![]() | ||
|
| |
|
| |
![]() | ||
|
| |
![]() | ||
| 1:[提示词:0~1的数值],案例:forest,lots of trees and stones,[flowers:0.7],表示整体采样值到达70%时开始进行花的描述,这样就会出现花会很少的森林图像 2:[提示词::0~1的数值],案例:forest,lots of trees and stones,[flowers::0.7],表示从开始就进行花的采样,到达70%的进程后停止采样,这样出现的花会比上一个语法多出来一些 | |
![]() | ||
|
| |
![]() |
|
采样分配不够,近景可以得到更多的采样分配,脸崩概率小,远景的采样分配少,所以会出现脸崩的情况, 解决方法1:图片分辨率保持较低合理的范围,然后开启高清修复,图片放大两倍,图片分辨率就上来了,可以解决脸崩的问题,但不是最优解,因为高清修复是提高了整体的分辨率,脸部只是增加了一点,但是会大幅增加渲染时间 解决方法2:发送到图生图,利用蒙版把脸遮住,然后选择仅蒙版区域,可以高效解决脸崩问题(适合单个人脸,如果出现很多,则会大大增加工作量) 解决方案3:拓展安装(从网站下载):https://github.com/Bing-su/adetailer.git插件,然后到https://huggingface.co/Bingsu/adetailer/tree/main中下载face_yolov8m.pt,face_yolov8n.pt,face_yolov8n_v2.pt,face_yolov8s.pt,这几个用来修复人脸的模型 had是修复手部的模型,person是用来增加人物整体细节的模型,放到SD目录/models/adetailer中,使用的时候勾选启用ADetailer,选择修复模型(mediapipe_face_full只能对真人生效),选择后下方框框输入detail face即可修复脸部(关键词如果增加微笑,生气,闭眼等,图片也会进行微调),也可以组合使用,单元1增加人物整体细节,单元2mediapipe_face_full下方框框输入detail face,单元3选择手部修复不加词, |
|
解决方法1:在开始生成图片的时候输入负面提示词添加:残缺的手指,六个手指等,(找反向提示词集:bad-hands-5) 解决方法2:openpose骨骼图,打开文生图界面,通过controlnet,上传一张图片,然后通过openpose来获取同款手指姿势,点启用和完美像素模式,模型控制选择openpos(姿势),然后预处理器选择dw_openpose_full,模型选择openpose相同的,点击预处理结果(预处理器后边的爆炸标志),然后进行生图片,如果手部需要调整怪,固定种子数,然后在拓展一行找到openpose编辑器(在线库搜索openpose-editor安装),点击姿势图右下角的编辑,对骨骼图进行调整,调整完发送到controlnet,然后生成,缺点:图片会有少许变动,可以将图片发送到图生图,然后把骨骼图保存下来,加载到图生图的controlnet,控制类型选择openpose(姿势),预处理器选择无(因为有了骨骼图),模型还是openpose,然后点击生成,在图片和图片会和原图非常接近,如果不希望图片有任何其他的变化,将图片发送到局部重绘,用画笔工具将图片手部涂鸦,然后打开controlnet,将骨骼图拖入,点击启用,控制类型选择openpose(姿势),预处理器选择无,选择重绘蒙版内容,蒙版区域内容处理选择填充,重绘区域选择整张图片,生成即可; 进阶:多重控制(openpose骨骼图),比如爱心的手势,打开文生图界面,通过controlnet0,上传一张图片,然后通过openpose来获取同款手指姿势,点启用和完美像素模式,模型控制选择openpos(姿势),然后预处理器选择dw_openpose_full,模型选择openpose相同的,点击预处理结果(预处理器后边的爆炸标志),然后进行生图片,图片如果很奇怪,点击controlnet1启用,点击完美像素,控制类型选择深度,预处理器选择depth_midas,模型选择和depth相同的,控制权重0.6,然后将通过controlnet0(姿势控制)的权重也调整到0.6,点击生成,如果还是奇怪,点击controlnet2启用,点击完美像素,控制类型选择Softedge(软边缘),预处理器选择Softedge_pidinet,模型选择Softedge相关的,权重改成0.6,点击预处理结果(爆炸按钮),再次点击生成即可 解决方案3:安装Depth Library拓展插件,安装手部模型进行解决 |
这篇是Stable Diffusion基础的了解和使用技巧,后边AI写真,转换画风等需要使用Stable Diffusion时会在对软件具体功能进行详细的讲解
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
零基础AI绘画学习资源介绍
👉stable diffusion新手0基础入门PDF👈
👉AI绘画必备工具👈
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉AI绘画基础+速成+进阶使用教程👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末