tensorRT
文章平均质量分 91
以实战为线索学习tensorRT的使用,将torch模型用TRT进行部署推理
爱吃肉的鹏
研究领域:深度学习、目标检测。
阿里云开发者社区专家博主。
CSDN专家博主。
曾就职于杭州海康威视、某企业研究院
杭州海康威视"综合安防管理平台培训优秀学员"
负责过武警部队"智慧磐石"智能化建设、河北软件学院"智慧校园"等项目。
展开
-
YOLOv5 tensorRT C++代码详解之engine的读取
engine文件的读取需要用到ifstreamifstream – 从已有的文件读入ofstream – 向文件写内容fstream - 打开文件供读写文件打开模式:ios::in 只读ios::out 只写ios::app 从文件末尾开始写,防止丢失文件中原来就有的内容ios::binary 二进制模式ios::nocreate 打开一个文件时,如果文件不存在,不创建文件ios::noreplace 打开一个文件时,如果文件不存在,创建该文件。原创 2023-08-20 12:41:05 · 1831 阅读 · 2 评论 -
SSD目标检测网络tensorRT推理【附代码】
终于更新了,本篇是实现了SSD的tensorrt 推理【python版】。YOLOv4以及YOLOv5C++版的tensorrt推理可以看我之前的文章。SSD代码我这里是在b站up主Bubbliiiing的pytorch版SSD的基础上进行的实现。原创 2022-10-26 12:13:06 · 2925 阅读 · 8 评论 -
YOLOv4 tensorrt推理 python版【附代码】
学了几天的tensorRT,又经过了几天的努力终于实现了YOLOv4 tensorRT推理,这篇文章将把这些成果开源出来,供大家免费使用。YOLOv4代码我采用的是b站up主,相信大家应该都比较熟悉这位大佬。关于trt的推理部分我是参考了官方YOLOV5 6.2版本。有关YOLOv4剪枝参考我另一篇文章:剪枝以后的模型也可以用tensorrt进行推理【理论是可行的,虽然我还没试】windows10cuda10.2cudnn8.2.1pytorch1.7python 3.7。原创 2022-10-23 18:51:15 · 2519 阅读 · 14 评论 -
利用python版tensorRT进行推理【以yolov5为例】
上一篇文章中已经详细叙述了如何用tensorRT将onnx转为engine。本篇文章将继续讲解trt的推理部分。与之前一样,在讲解之前需要先介绍一些专业术语,让大家看看这些内置函数都有什么功能。Binding翻译过来就是绑定。engine/context会给所有的输入输出安排位置。总共有个binding。这里借用一张图来说明,下面图中如果模型有两个输入张量x、y,两个输出张量index和entropy,那么engine和context会按照这四个张量的拓扑顺序给一个Binding。原创 2022-10-19 13:20:46 · 9717 阅读 · 18 评论 -
利用python版tensorRT导出engine【以yolov5为例】
在介绍导出engine过程需要先介绍一下会遇到的相关术语。1.建立logger:日志记录器2.建立Builder:网络元数据用于搭建网络的入口,网络的TRT内部表示以及可执行程序引擎都是由该对象的成员方法生成原创 2022-10-13 19:13:03 · 11875 阅读 · 13 评论 -
tensorRT-lenet C++代码分析【附代码】
前面的文章中已经写了一个tensorRT简单的demo---lenet推理【tensorRT-lenet】,实现了从torch模型转wts【同时也展示出了wts内网络的详细信息】再转engine后的推理过程,本文章是在之前的基础上去分析C++代码的实现。原创 2022-10-02 15:19:21 · 2400 阅读 · 4 评论 -
tensorRT学习--lenet5【支持windows 附代码】
前面写了一系列YOLO系列的剪枝以及libtorch推理的文章,如何将模型进行部署这才是一个难点,将学术成果转为实际应用,因此后续将不定期写一些有关tensorRT学习的文章,本文也是参考以下链接的教程,相信使用tensorrt推理yolov5大家都用过了。本文将以lenet为例进行tensorRT的推理。原创 2022-10-01 14:51:05 · 1650 阅读 · 5 评论