Saving Beans
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4241 Accepted Submission(s): 1651
Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.
Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
Input
The first line contains one integer T, means the number of cases.
Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
Output
You should output the answer modulo p.
Sample Input
2 1 2 5 2 1 5
Sample Output
3 3HintHint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on. The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are: put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.题意大意是在n棵树上摘m个豆子,可以转化为x1+x2+.....xn=m(o<=m<=m)可以利用插空法把m个数分为n组,也就是说在m-1个空中插入n-1个挡板插空法使用的前提是 1.每个元素互不相异 2.每组至少还有一个元素3.每组各不相同但是题目不一定满足2,所以提前在每组中放入一个,所以共有m+n个数,分为m组C(n+m-1,n-1)=C(n+m-1,m)(0<=m<=m)sum=C(n-1,0)+C(n,1)+C(n+1,2)+....C(n+m-1,m) C(n,m)=C(n-1,m)+C(n-1,m-1)=C(n,0)+C(n,1)+...=C(n+1,1) +C(n+1,2)最后化简得C(n+m,m)利用Lucas原理即可#include<stdio.h> #define MAX 100010 #define LL long long LL f[MAX]; void findinit(LL p) { f[0]=1; for(int i=1;i<=p;i++) f[i]=(f[i-1]*i)%p; } LL powermod(LL a,LL b,LL mod) { LL ans=1; while(b) { if(b%2) ans=ans*a%mod; a=a*a%mod; b/=2; } return ans; } LL lucas(LL n,LL m,LL p) { LL ans=1; while(n&&m) { LL a=n%p; LL b=m%p; if(a<b) return 0; ans=(ans*f[a]*powermod(f[b]*f[a-b]%p,p-2,p))%p; n/=p; m/=p; } return ans; } int main() { int t; LL n,m,p; scanf("%d",&t); while(t--) { scanf("%lld%lld%lld",&n,&m,&p); findinit(p); printf("%lld\n",lucas(n+m,m,p)); } return 0; }