机器学习中的矩阵向量求导(一) 求导定义与求导布局

博客链接:https://www.cnblogs.com/pinard/p/10750718.html

这篇博客主要介绍了

1、求导时遵循的求导布局:分子布局(求导结果的维度以分子为主)以及分母布局(求导结果的维度以分母为主)。

2、介绍了标量、向量、矩阵对标量的求导(向量和矩阵中的每一个分量分别对标量求导)

3、介绍了标量、向量对向量的求导(向量中的每一个分量分别对另一个向量中的分量分别求导)

4、介绍了标量对矩阵的求导

在之前写的上百篇机器学习博客中,不时会使用矩阵向量求导的方法来简化公式推演,但是并没有系统性的进行过讲解,因此让很多朋友迷惑矩阵向量求导的具体过程为什么会是这样的。这里准备用几篇博文来讨论下机器学习中的矩阵向量求导,今天是第一篇。

 

 

本系列主要参考文献为维基百科的Matrix Caculas和张贤达的《矩阵分析与应用》。

1. 矩阵向量求导引入

    在高等数学里面,我们已经学过了标量对标量的求导,比如标量yy对标量xx的求导,可以表示为∂y∂x∂y∂x。

    有些时候,我们会有一组标量yi,i=1,2,...,myi,i=1,2,...,m来对一个标量xx的求导,那么我们会得到一组标量求导的结果:

∂yi∂x,i=1,2.,,,m∂yi∂x,i=1,2.,,,m

    如果我们把这组标量写成向量的形式,即得到维度为m的一个向量yy对一个标量xx的求导,那么结果也是一个m维的向量:∂y∂x∂y∂x

    可见,所谓向量对标量的求导,其实就是向量里的每个分量分别对标量求导,最后把求导的结果排列在一起,按一个向量表示而已。类似的结论也存在于标量对向量的求导,向量对向量的求导,向量对矩阵的求导,矩阵对向量的求导,以及矩阵对矩阵的求导等。

    总而言之,所谓的向量矩阵求导本质上就是多元函数求导,仅仅是把把函数的自变量,因变量以及标量求导的结果排列成了向量矩阵的形式,方便表达与计算,更加简洁而已。

    为了便于描述,后面如果没有指明,则求导的自变量用xx表示标量,xx表示n维向量,XX表示m×nm×n维度的矩阵,求导的因变量用yy表示标量,yy表示m维向量,YY表示p×qp×q维度的矩阵。

2. 矩阵向量求导定义

    根据求导的自变量和因变量是标量,向量还是矩阵,我们有9种可能的矩阵求导定义,如下:

自变量\因变量标量yy向量yy矩阵YY
标量xx∂y∂x∂y∂x∂y∂x∂y∂x∂Y∂x∂Y∂x
向量xx∂y∂x∂y∂x∂y∂x∂y∂x∂Y∂x∂Y∂x
矩阵XX∂y∂X∂y∂X∂y∂X∂y∂X∂Y∂X∂Y∂X

 

    这9种里面,标量对标量的求导高数里面就有,不需要我们单独讨论,在剩下的8种情况里面,我们先讨论上图中标量对向量或矩阵求导,向量或矩阵对标量求导,以及向量对向量求导这5种情况。另外三种向量对矩阵的求导,矩阵对向量的求导,以及矩阵对矩阵的求导我们在后面再讲。

    现在我们回看第一节讲到的例子,维度为m的一个向量yy对一个标量xx的求导,那么结果也是一个m维的向量:∂y∂x∂y∂x。这是我们表格里面向量对标量求导的情况。这里有一个问题没有讲到,就是这个m维的求导结果排列成的m维向量到底应该是列向量还是行向量?

    这个问题的答案是:行向量或者列向量皆可!毕竟我们求导的本质只是把标量求导的结果排列起来,至于是按行排列还是按列排列都是可以的。但是这样也有问题,在我们机器学习算法法优化过程中,如果行向量或者列向量随便写,那么结果就不唯一,乱套了。

    为了解决这个问题,我们引入求导布局的概念。

3. 矩阵向量求导布局

    为了解决矩阵向量求导的结果不唯一,我们引入求导布局。最基本的求导布局有两个:分子布局(numerator layout)和分母布局(denominator layout )。

    对于分子布局来说,我们求导结果的维度以分子为主,比如对于我们上面对标量求导的例子,结果的维度和分子的维度是一致的。也就是说,如果向量yy是一个m维的列向量,那么求导结果∂y∂x∂y∂x也是一个m维列向量。如果如果向量yy是一个m维的行向量,那么求导结果∂y∂x∂y∂x也是一个m维行向量。

    对于分母布局来说,我们求导结果的维度以分母为主,比如对于我们上面对标量求导的例子,如果向量yy是一个m维的列向量,那么求导结果∂y∂x∂y∂x是一个m维行向量。如果如果向量yy是一个m维的行向量,那么求导结果∂y∂x∂y∂x是一个m维的列向量向量。

    可见,对于分子布局和分母布局的结果来说,两者相差一个转置。

    再举一个例子,标量yy对矩阵XX求导,那么如果按分母布局,则求导结果的维度和矩阵XX的维度m×nm×n是一致的。如果是分子布局,则求导结果的维度为n×mn×m。

    这样,对于标量对向量或者矩阵求导,向量或者矩阵对标量求导这4种情况,对应的分子布局和分母布局的排列方式已经确定了。

    稍微麻烦点的是向量对向量的求导,本文只讨论列向量对列向量的求导,其他的行向量求导只是差一个转置而已。比如m维列向量yy对n维列向量xx求导。它的求导结果在分子布局和分母布局各是什么呢?对于这2个向量求导,那么一共有mnmn个标量对标量的求导。求导的结果一般是排列为一个矩阵。如果是分子布局,则矩阵的第一个维度以分子为准,即结果是一个m×nm×n的矩阵,如下:

∂y∂x=⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜∂y1∂x1∂y2∂x1⋮∂ym∂x1∂y1∂x2∂y2∂x2⋮∂ym∂x2……⋱…∂y1∂xn∂y2∂xn⋮∂ym∂xn⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟∂y∂x=(∂y1∂x1∂y1∂x2…∂y1∂xn∂y2∂x1∂y2∂x2…∂y2∂xn⋮⋮⋱⋮∂ym∂x1∂ym∂x2…∂ym∂xn)

    上边这个按分子布局的向量对向量求导的结果矩阵,我们一般叫做雅克比 (Jacobian)矩阵。有的资料上会使用∂y∂xT∂y∂xT来定义雅克比矩阵,意义是一样的。

    如果是按分母布局,则求导的结果矩阵的第一维度会以分母为准,即结果是一个n×mn×m的矩阵,如下:

∂y∂x=⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜∂y1∂x1∂y1∂x2⋮∂y1∂xn∂y2∂x1∂y2∂x2⋮∂y2∂xn……⋱…∂ym∂x1∂ym∂x2⋮∂ym∂xn⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟∂y∂x=(∂y1∂x1∂y2∂x1…∂ym∂x1∂y1∂x2∂y2∂x2…∂ym∂x2⋮⋮⋱⋮∂y1∂xn∂y2∂xn…∂ym∂xn)

    上边这个按分母布局的向量对向量求导的结果矩阵,我们一般叫做梯度矩阵。有的资料上会使用∂yT∂x∂yT∂x来定义梯度矩阵,意义是一样的。

    有了布局的概念,我们对于上面5种求导类型,可以各选择一种布局来求导。但是对于某一种求导类型,不能同时使用分子布局和分母布局求导。

    但是在机器学习算法原理的资料推导里,我们并没有看到说正在使用什么布局,也就是说布局被隐含了,这就需要自己去推演,比较麻烦。但是一般来说我们会使用一种叫混合布局的思路,即如果是向量或者矩阵对标量求导,则使用分子布局为准,如果是标量对向量或者矩阵求导,则以分母布局为准。对于向量对对向量求导,有些分歧,我的所有文章中会以分子布局的雅克比矩阵为主。

    具体总结如下:

自变量\因变量标量yy列向量yy矩阵YY
标量xx/

∂y∂x∂y∂x

分子布局:m维列向量(默认布局)

分母布局:m维行向量

∂Y∂x∂Y∂x

分子布局:p×qp×q矩阵(默认布局)

分母布局:q×pq×p矩阵

列向量xx

∂y∂x∂y∂x

分子布局:n维行向量

分母布局:n维列向量(默认布局)

∂y∂x∂y∂x

分子布局:m×nm×n雅克比矩阵(默认布局)

分母布局:n×mn×m梯度矩阵

/
矩阵XX

∂y∂X∂y∂X

分子布局:n×mn×m矩阵

分母布局:m×nm×n矩阵(默认布局)

//

4. 矩阵向量求导基础总结

    有了矩阵向量求导的定义和默认布局,我们后续就可以对上表中的5种矩阵向量求导过程进行一些常见的求导推导总结求导方法,并讨论向量求导的链式法则。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值