前提知识
整除关系需满足 除数,被除数,商都是整数 (0,-3也属于整数)
A整除B(A/B)=商(), 余数是0 ,而A是被除数,B是除数
小于等于关系LA ,整除关系DA
什么是二元关系
令A为某大学所有学生的集合,B表示该大学开设的所有课程的集合,则AxB可表示该校学生选课的所有可能情况.而真正的选课情况则会是AxB的某一个子集
令F为某地所有父亲的集合,S表示该地所有儿子的集合,则FXS可表示父子关系的所有可能情况,而真正的父子关系则会是FxS的某一个子集
二元关系定义
设A,B为两个非空集合,称AxB的任意子集R为从A到B的一个二元关系,简称关系
其中 A称为关系R的前域 , B称关系R的后域 ,如果A=B,则称R为A上的一个二元关系
二元关系的数学符号
若有序对/序偶<x,y>∈R, 通常把这一切事实记作xRy , 读作"x对y有关系R"
反之X对y没有关系R
枚举二元关系
幂集: 集合内的若有n个元素,则排列0元子集,一元子集,二元子集…n元子集
而二元关系是笛卡尔积的子集,若要求求出所有的二元关系,则需要先求出笛卡尔积,再进行幂集排序
空关系 &全域关系& 恒等关系
EA ={<x,y>|x∈A ∩ y∈B}= A x A
IA= { <x,x>|x∈A }
举例 集合 A={1,2}
EA=AxA ={<1,1>,<1,2>,<2,1>,<2,2>}
IA={<1,1>,<2,2>}
定义域和值域
设R是从A到B的二元关系, 则A为关系R的前域, B为关系R的后域.
令C={x|x∈A, ∃y∈B, <x,y>∈R}, D={y|y∈B, ∃x∈A , <x,y>∈R}
称C为R的定义域,记作C=domR , D为R的值域, 记作D=ranR
R的域: fldR(域)= (定域U值域) domR U ranR
例子
比如X={1,2,3},在X上有关系R={<1,1>, < 3,2>}
则定义域domR 是{1,3} [ 定义域是将每个关系的第一元素拿出来]
则值域ranR是{1,2} [ 值域是将每个关系的第二元素拿出来]
而域fldR是{1,2,3}
关系的性质
(1)自反性与反自反性
设R为A上的关系
(1)若∀x x∈A → <x,x>∈R,则称R在A上是自反的
可以理解成∀x,有xRx
(2)若∀x x∈A → <x,x>∉R,则称R在A上是反自反的
可以理解成∀x,有x和x没有关系R
若R是自反的,则推出R不是反自反的;
若R是反自反的,则推出R不是自反的
自反关系: A上的全域关系EA, 恒等关系IA ,小于等于关系LA,整除关系DA
反自反关系: 实数集上的小于关系,幂集上的真包含关系
举例
若A={1,2,3},R1,R2,R3是A上的关系,以下判断的自反性质
R1 = {<1,1>,<2,2>} , 是自反的,不是反自反的
因为左式代表<3,3>不存在关系,则与<x,x>是自反的关系,相违背。
则称R1不是自反的,又因<x,x>不存在关系称为反自反的,则推导出R1也不是反自反的
R2 = {<1,1>,<2,2>,< 3,3>,<1,2>},是自反的,不是反自反的
因为自反的关系都存在,
R3= {<1,3>} 不是自反的,是反自反的
,因为<x,x>不存在关系
(2)对称性与反对称性
设R为A上的关系
(1)若(∀<x,y>)(<x,y>∈R →<y,x>∈R),则称R在A上是对称的
可以理解成 若 ∀<x,y>有xRy 则 yRx
(2)若(∀<x,y>)(<x,y>∈R 且<y,x>∈R → x=y ),则称R在A上是反对称的
可以理解成 若 ∀<x,y>有xRy且 yRx, 则x=y
对称关系: A上的全域关系EA , 恒等关系IA 和 空关系Ø
反对称关系: 恒等关系IA, 空关系Ø
举例
若A={1,2,3},R1,R2,R3是A上的关系,以下判断的对称性
R1 = {<1,1>,<2,2>} 是 对称的,是反对称的
因为左式<1,1>,右式<1,1>都是T,则称<1,1>是对称的 ,同理<2,2>也是对称的
因为左式<1,1>,<1,1>成立T,且1=1,则称<1,1>是反对称的 ,同理<2,2>也是反对称的
R2 = {<1,1>,<1,2>,<2,1>}, 是对称的,不是反对称的
因为<1,1>是对称的, <1,2>可以推导<2,1>.则是对称的
因为<1,1>是反对称的, 左式<1,2>且<2,1>成立T,但1≠2,则不是对称的
R3= {<1,2>,<1,3>} ,不是对称的,是反对称的
因为<1,2>不能推导<2,1>则T蕴含F,则<1,2>不是对称的,同理<1,3>也不是对称的
因为<1,2>且<2,1>不存在关系,则左式为F,则是反对称的,同理<1,3>是反对称的
R4= {<1,2>,<2,1>,<1,3>} 不是对称的,不是反对称的
(3)传递性
定义 设R为A上的关系,若(∀<x,y>)(∀<y,z>) (<x,y>∈R ⋀ <y,z>∈R→ <x,z>∈R ),则称R是A上的传递关系
可以理解成 若 xRy 且yRz ,则xRz
A上的全域关系EA ,恒等关系IA , 空关系Ø,
小于等于关系,小于关系,整除关系,包含关系,真包关系
举例
若A={1,2,3},R1,R2,R3是A上的关系,以下判断的传递性
R1={<1,1>,<1,2>} 是传递的
R2={<1,2>,<2,3>} 不是传递的
因为不存在<1,3>所以为F, T(<1,2>且<2,3>)蕴含F<1,3>,则不是传递的
R3={<1,3>} 是传递的
因为左式为F ,则是传递的
关系的性质矩图
证明自反性与对称性与传递性
关系的表示
关系是一个特殊的集合,因此集合的 两种基本表示法(枚举法和叙述法)可以用到关系的表示中
枚举法&叙述法表示例子
关系的图形表示
关系矩阵方式
关系矩阵内的1,0数学意义: 1表示A和B有关系;0表示A和B没关系
1代表A到B有关系R, 0代表A到B没有关系R
关系的运算
集合是父类,关系是子类
关系是一种特殊的集合,因此集合所有的基本运算(交,并,差,补)
都可以应用到关系中,并且同样满足集合的所有运算定理
(1) 布尔矩阵的并和交运算
(2)关系矩阵的布尔运算
理解: 最右边 A与B的积运算的第一排的第一列是1 ,求法是左边A第一排和B第一列中,若存在 1 1对应则,结果为1,否则为0
1 0 1
0 0 1 = 1
(3)关系的并交差补运算
(4)关系的复合运算定义
复合运算的关系图法/关系矩阵
总结 (关系的复合运算)
关系的复合运算公式
注意: R∘ S ≠ S ∘ R
(R∘ S) ∘ T = R ∘ (S ∘T)
(F ∘ G) -1 = G -1 ∘ F -1
MR∘S = MR ⨀ MS
1.结合律
2.分配律
(5)关系复合逆运算定义
(6)关系的逆运算定理
I. R的关系图中,改变箭头方向即得R -1的关系图,
II. R与R -1 的关系互为转置矩阵(就是行和列互换)
III. R-1 的定义域和值域正好是R的值域和定义域
IIII. domR = ranR -1 , ranR = domR-1
|||||. |R|=|R -1|
逆运算公式
定理 设R和S是集合A到B的二元关系,则⋃⋂ ⋁⊆
(1)MR⋂S = MR ⋀ MS
(2)MR⋃S = MR ⋁ MS
(3)若R⊆S,则R-1 ⊆ S-1
(4)若R⊆S,则Rc ⊆ Sc(c表示的是R的补集=EA-S=AxB-S)
(5)(R ⋂ S)-1= R-1 ⋂ S-1
(6)(R ⋃ S)-1= R-1 ⋃ S-1
(7)(R ⋂ S)c= Rc ⋃ Sc (和德摩根定律类似 ~(A⋂B)= ~A ⋃ ~B )
(7)(R ⋃ S)c= Rc ⋂ Sc (和德摩根定律类似 ~(A⋃B)= ~A ⋂ ~B )
(7)关系的幂运算
因为 I A o R = R = I B o R, R0+1 =R0 +R1 ,得R0= I A
幂的性质
幂运算的收敛性
关系的闭包
定义设R是非空集合A上的关系,R的自反(对称/传递)闭包R1满足以下条件
1.增加条件后,自反闭包R1是自反的
2.关系R⊆自反闭包R1
3.对于A上包含R的自反关系R11 , 有R1⊆R11,
则将R的自反闭包记作 r(R),一般称R的自反闭包记作r( R),
对称闭包 记作 s( R)
传递闭包 记作 t( R)
或者称:自反闭包包含R的最小的自反关系,就叫做自反闭包
关系闭包的公式
1. r( R) = R⋃ IA
2. s( R) = R⋃ R-1
3. t( R) = R⋃ R2⋃ R3⋃ R4⋃ R5⋃ R6…⋃ Rn
等价关系与序关系
前提
等价关系是特殊的二元关系序偶的集合
A上的关系R的等价关系构成的集合是集合A的子集
举例
设A={1,2,3},确定A的所有划分
注:π是划分关系的集合π1= { {1},{2},{3}} ,它的划分块是3
π2= { {1,2},{3}} , 它的划分块是2
π3= { {1},{2,3}} , 它的划分块是2
π4= { {1,3},{2}} , 它的划分块是2
π5={A} , 它的划分快是1共有五种划分方式
等价关系与商集
定义1
设R为非空集合上的关系,若R是自反的,对称的,传递的,则称R为A上的等价关系.
设R是一个等价关系,若<x,y>∈R,称x等价于y 记作x~y
定义2
设R为非空集合A上的等价关系,令x∈R,[x]R= {y|y∈A ⋀ xRy },称[x]R为x关于R的等价类,简称为x的等价类,简记为[x]
理解来说: 在等价关系R下,与x的有关系的其他元素,包括他自己,构成的一个集合,就叫做x的等价类
定理
设R设非空集合A上的等价关系,则
(1)∀ x ∈ A ,[x]是A的非空子集.
(2)∀x,y∈A,如果xRy,[x]=[y]
(3)∀x,y∈A,如果x和y没有关系R,则[x]≠[y]
U{ [x]| x∈A} = A,即所有等价类的并集就是集合A
商集的定义
设R为非空集合A上的等价关系,以R的所有等价类作为元素的集合称为R的商集S,记作A/R
A/R ={ [ [x]R | x∈A }比如集合A={1,2,3,4,5,6,7,8},x和y取余3相等的等价关系R={<1,1>,<1,4>,<1,7>,<4,1>,<7,1>,<4,7>,<7,4>,<4,4>,<7,7>.<2,2>,<2,5>,<5,2>,<5,5>,<2,8><8,2>,<5,8>,<8,5>,<8,8>,< 3,3>,< 3,6>,<6,3><6,6>}
A/R = { [1]R , [2]R , [3]R }
举例1
A mod B = A取余B
[1]=[4]=[7]={1,4,7} ,表示 1mod 3 = 4mod3 = 7mod 3 ,余数都是1
[2]=[5]=[8]={2,5,8} 2mod 3 = 5mod3 = 8mod 3 ,余数都是2
[3]=[6] 3mod3 = 6 mod 3,余数都是0
举例2
设X= {1,2,3,4},X的划分S={ {1} , {2,3} , {4} },试写出S导出的等价关系R
R={ <1,1> , <2,2>,<2,3>,< 3,2>,< 3,3>, <4,4> }