第二章范式

符号集: ¬, ∧, ∨, → , ↔

第二章 命题逻辑的推理理论

学习目标

1.1 析取范式和合取范式的概念
1.2 利用等值演算法计算命题公式的范式
2.1 小项和大项的概念及编码
2.2主析取范式及计算
2.3主合取范式及其计算
3.1能运用各种命题推理

合取式&析取范式

合取式概念: 由命题变元 或其否定形式 构成的合取式称为简单合取式
eg: ¬p∧q, p∧¬q, p∧q, ¬q, ¬p ,p 都是简单合取式

析取范式概念: 由 简单合取式 进行析取 的公式称为 析取范式 [ L1 ∨ L2 ∨… ∨ Ln ]

析取式&合取范式

析取式概念: 由命题变元 或其否定形式 构成的析取式称为简单析取式
eg: ¬p∨q, p∨¬q, p∨q, ¬q, ¬p ,q 都是简单析取式

合取范式概念: 由 简单析取式 进行合取 的公式称为 合取范式 [ L1 ∧ L2 ∧… ∧ Ln ]

注意
1.任何命题公式都可以化成与其等价的析取范式或合取范式
    2. 求析取范式和合取范式的步骤
       I.消去  → , ↔
       II.利用双重否定 消去 否定连接词¬ ; 利用德摩根定律将否定提到外面
       III.利用分配律,结合律将公式约为合取范式和析取范式

极小项

意义: 在含有n个命题变元P1,P2,P3…Pn的短语或子句中,若每个命题变元与其否定不同时存在.但二者之一恰好出现一次仅一次,并且出现的次序和P1,P2,P3…Pn一致,则称此短语或子句为关于P1,P2,P3…Pn的一个极小项或极大项
如(P,Q构成的极小项表示 : ( ¬p∧q, p∧¬q, p∧q, ¬q∧¬p )(m01,m10,m11,m00)(m2,m1,m0,m3)
注意若有n个命题变元.则有2的n次方个小项

在这里插入图片描述

极大项

意义: 在含有n个命题变元P1,P2,P3…Pn的短语或子句中,若每个命题变元与其否定不同时存在.但二者之一恰好出现一次仅一次,并且出现的次序和P1,P2,P3…Pn一致,则称此短语或子句为关于P1,P2,P3…Pn的一个极小项或极大项
如(P,Q构成的极大项表示 : ¬pVq, pV¬q, pVq, ¬qV¬p )(m10,m01,m00,m11)(m2,m1,m0,m3)
注意若有n个命题变元.则有2的n次方个小项
在这里插入图片描述

极小项和极大项的性质

在这里插入图片描述

主析取范式和主合取范式

为什么引入主析取/合取范式: 因为范式的不唯一性,我们考虑对构成范式的子句和短语进一步规范化,从
而形成唯一的主析取范式和主合取范式
主析取范式概念 :在给定的析取范式中,若每一个短语都是极小项,且按照编码从小到大的顺序排列,则称该范式为主析取范式

主合取范式概念 :在给定的析取范式中,若每一个短语都是极大项,且按照编码从小到大的顺序排列,则称该范式为主析取范式

注意

  1. 如果一个主析取范式不包含任何极小项,则称该主析取范式为"空" ;
  2. 如果一个主合取范式不包含任何极大项,则称该主合取范式为"空"
  3. 任何一个公式都有与之等价的主析取范式和主合取范式
  4. 每个大项当其真值指派就是(p指派0,q指派0,r指派)与编码相同时,其真值为F,在其余情况下均为T.
  5. 任意两个不同大项的析取式永真
  6. 全体大项的合取式永假
    在真值表中,一个公式的真值为F的指派所对应的合取,即为该公式的主合取范式
主析取范式求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

主范式的特点和应用

在这里插入图片描述
在这里插入图片描述

蕴含式的定义

蕴含式是逻辑推理的重要工具
设A和B是命题公式,若A→B是重言式,则称A蕴含B,记作A => B

蕴含式的定理

1.定理 设A,B为任意连个命题公式.则 A<=>B的充分必要条件是 A=>B(A推导B or A蕴含B)且B=>A
2.定理 设A,B,C为合式公式

(1)A =>A (即蕴含是自反的)
(2)若A =>B且A为重言式,则B必为重言式
(3)若A =>B且B=>C,则 A => C(即蕴含是传递的)
(4)若A =>B且A=>C,则 A => B∧C
(5)若A =>B且C=>B,则 A∨C => B
(6)若A =>B,C是任意公式,则 A∧c => B∧C

证明蕴含的方法
  1. 真值表法,即构建A→B的真值表
  1. 等价演算法
  1. 对A(左式)指定真值T,若由此推出B(右式)的真值为T,则A→B是重言式,即A (左式)=> B(右式)
  1. 对B(右式)指定真值F,若由此推出A(左式)的真值为F,则A→B是重言式,即A (左式)=> B(右式)

在这里插入图片描述

自然推理系统

推理概述

在这里插入图片描述

前提推导结论的定义及方法

定理1.公式H是前提集合F={G1,G2,G3…Gn}的逻辑结果当且仅当(G1∧G2∧G3…∧Gn) → H为永真公式
永真证明方法{

1.真值表证明法 (所有真值结果为真,则为永真公式)
2.公式转换法证明法 :结果为真(通过公式转换,结果为真,则为永真公式)
3.主析取范式证明法 (将公式转化成主析取范式,其主析取范式包含所有极小项,又因极小项值都是真,所以主析取范式结果为真)
}

在这里插入图片描述

如何在自然推理系统中构造有效论证的方法

规则P (前提引用规则) :在推导的过程中,可随时引入前提集合中的任意一个前提;
规则T(逻辑结果引用规则): 在推导的过程中,可以随时引入公式S,该公式S是由一个或多个公式推导出来的逻辑结果
规则CP(附加前提规则):如果能给定的前提集合F 与公式P推导出S,则能从此前提集合F推导出R→ S

推理定律(规则)

推理定理可用于直接证明法,反证法,CP证法

附加律 : A => (A∨B)
化简律: (A ∧ B) => A
假言推理: ( (A → B) ∧ A) => B
拒取式: ( (A → B) ∧ ¬B) => ¬A
条件(假言)三段论: ( (A → B)∧( B → C) ) => (A → C)
析取三段论 : ( (A V B) ∧ ¬B ) => A
合取引入规则 : A,B => (A ∧ B)
假言三段论: G→H,H→I=>G→I

1.直接证明法

概念: 由前提利用推理规则直接推出结论(可使用树叉的形式倒推整理)

例子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.附加前提证明法(CP规则)
  • 如果结论是一个蕴含式(A→B),则可将蕴含式的前提移动到整个式子的前提中,作为一个附加前提
    Example
    想证明: A1 ∧A2 ∧ …An |= C → B
    相当于证明 : A1 ∧A2 ∧…An ∧ C |= B
例子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.反证法(归缪法)

概念:将结论的否定代入前提,若中间推断矛盾,则结论成立

  • 要证明: A1 ∧A2 ∧ …An |= B
  • 先证明: A1 ∧A2 ∧ …An ∧ ¬B 若推导过程中出现矛盾,则结论成立
例子

在这里插入图片描述

在这里插入图片描述

### 关系数据库 第二章 内容 #### 2.1 关系模型基本概念 关系模型是一种基于集合论和谓词逻辑的高级抽象数据模型。其核心结构是二维表格形式的关系,由行(记录)和列(字段)组成。每一行代表实体的一个实例,而每列则表示该实体的一种属性。 - **域**:指某一列允许取值范围内的所有可能值。 - **元组**:对应于表中的一行记录。 - **属性**:相当于一列表头名称,描述了各列的信息类别[^1]。 #### 2.2 关系代数运算 为了操作这些关系,引入了一套完整的数学工具——关系代数。主要包括但不限于: - **并集 (∪)** :当两个关系具有相同数量且同名的属性时可以进行此操作; - **差集 (-)** : 获取左关系中有但右关系里没有的部分; - **笛卡尔积 (×)** : 将两个独立的关系组合成一个新的复合型关系; - **选择 (σ)** : 根据给定条件筛选符合条件的元组形成新的关系; - **连接 (⨝)** : 基于某些共同属性将多个关系结合起来[^3]。 #### 2.3 完整性和规范化理论 确保数据一致性的规则称为完整性约束,分为三类主要类型: - 实体完整性:规定主键不能为空也不得重复; - 参照完整性:维护外键与参照表之间联系的有效性; - 用户自定义完整性:依据具体应用场景设定特定业务规则。 另外,通过范式化过程减少冗余提高效率也是本章节重点之一。从第一范式到第五范式的逐步优化有助于构建高效稳定的关系型数据库系统[^2]。 ```sql CREATE TABLE Employees ( EmployeeID INT PRIMARY KEY, FirstName VARCHAR(50), LastName VARCHAR(50), DepartmentID INT FOREIGN KEY REFERENCES Departments(DepartmentID) ); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值