背包DP
题意: 有n个仓库需看管,现在有m个人应聘,每个人有一个价值p[i],雇佣这个人需要花费p[i],问最大的保险值是多少,以及保证最大保险值时的最小花费。
一个仓库保险值就是看管每个仓库的人的价值,但是管理员可以同时看管多个仓库,这时对应仓库的保险值为p[i]/x,x为该管理员同时看管的仓库数。
总的保险值为所有仓库保险值的最小值。一个仓库只能有一个看管者。
如果不能保证保险值大于0,输出0 0。
解法: 做两次分组背包DP,将每个p[i]看做一个组,组里的物品体积为p[i]/x,(1<=x<=p[i])。第一次求出最大值,第二次用最大值求出最小花费
求最大值的方程: dp[j] = max(dp[j], min(dp[j-k], p[i]/k))
求最大值下的最小花费的方程: dp[j] = min(dp[j], dp[j-k] + p[i])
/* **********************************************
Author : Nero
Created Time: 2013-8-27 9:57:11
Problem id : UVA 10163
Problem Name: Storage Keeper
*********************************************** */
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define REP(i,a,b) for(int i=(a); i<(int)(b); i++)
#define clr(a,b) memset(a,b,sizeof(a))
const int INF = ~0u>>2;
int dp[110];
int p[33];
int main() {
int n,m;
while(~scanf("%d%d", &m, &n), n || m) {
for(int i = 1; i <= n; i ++) {
scanf("%d", &p[i]);
}
clr(dp,0);
dp[0] = INF;
for(int i = 1; i <= n; i ++) {
for(int j = m; j >= 0; j --) {
for(int k = 1; k <= p[i] && k <= j; k ++) {
dp[j] = max(dp[j], min(dp[j-k], p[i]/k));
}
}
}
int maxn = dp[m];
if(maxn == 0) {
printf("0 0\n");
continue;
}
for(int i = 1; i <= m; i ++) dp[i] = INF;
dp[0] = 0;
for(int i = 1; i <= n; i ++) {
for(int j = m; j >= 0; j --) {
for(int k = min(j,p[i]/maxn); k > 0; k --) {
dp[j] = min(dp[j], dp[j-k] + p[i]);
}
}
}
printf("%d %d\n", maxn, dp[m]);
}
return 0;
}