性能界限与不确定性量化:理论与应用解析
1. 测量分数估计与CRB基础
在参数估计中,测量分数的估计是一个关键问题。我们可以通过将测量分数 $s_1(X; θ)$ 投影到由 $s_2(X; θ), \cdots, s_r(X; θ)$ 张成的子空间来估计 $s_1(X; θ)$。相关的Fisher信息矩阵 $J(θ)$ 定义如下:
[
J(θ) = E
\begin{bmatrix}
s_1(X, θ) \
s_2(X; θ)
\end{bmatrix}
\begin{bmatrix}
s_1(X, θ) & s^T_2(X; θ)
\end{bmatrix}
=
\begin{bmatrix}
J_{11} & J_{12} \
J^T_{12} & J_{22}
\end{bmatrix}
]
从 $s_2(X; θ), \cdots, s_r(X; θ)$ 对 $s_1(X; θ)$ 的线性最小均方误差(LMMSE)估计为 $J_{12}J^{-1} {22} s_2(X; θ)$,该估计的均方误差(MSE)为 $J {11} - J_{12}J^{-1} {22} J^T {12}$。$J(θ)$ 的逆矩阵可以表示为:
[
J^{-1}(θ) =
\begin{bmatrix}
(J_{11} - J_{12}J^{-1} {22} J^T {12})^{-1} & * \
* & *
\e