30、性能界限与不确定性量化:理论与应用解析

性能界限与不确定性量化:理论与应用解析

1. 测量分数估计与CRB基础

在参数估计中,测量分数的估计是一个关键问题。我们可以通过将测量分数 $s_1(X; θ)$ 投影到由 $s_2(X; θ), \cdots, s_r(X; θ)$ 张成的子空间来估计 $s_1(X; θ)$。相关的Fisher信息矩阵 $J(θ)$ 定义如下:
[
J(θ) = E
\begin{bmatrix}
s_1(X, θ) \
s_2(X; θ)
\end{bmatrix}
\begin{bmatrix}
s_1(X, θ) & s^T_2(X; θ)
\end{bmatrix}
=
\begin{bmatrix}
J_{11} & J_{12} \
J^T_{12} & J_{22}
\end{bmatrix}
]
从 $s_2(X; θ), \cdots, s_r(X; θ)$ 对 $s_1(X; θ)$ 的线性最小均方误差(LMMSE)估计为 $J_{12}J^{-1} {22} s_2(X; θ)$,该估计的均方误差(MSE)为 $J {11} - J_{12}J^{-1} {22} J^T {12}$。$J(θ)$ 的逆矩阵可以表示为:
[
J^{-1}(θ) =
\begin{bmatrix}
(J_{11} - J_{12}J^{-1} {22} J^T {12})^{-1} & * \
* & *
\e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值