39、正态分布理论:从二元到多元的深入剖析

正态分布理论:从二元到多元的深入剖析

1. 正态随机矩阵的合成与变换

从白随机矩阵合成正态随机矩阵是从白随机向量合成正态随机向量的扩展。考虑矩阵 (U \in R^{L×N}),其元素为独立同分布的正态 (N(0, 1)) 随机变量,且 (N \geq L)。(U) 的概率密度函数(pdf)与 (etr(-U I_N U^T / 2)) 成正比。将 (U) 按列排列为 (U = [u_1 u_2 \cdots u_N]),其中每个 (u_n) 是 (L×1) 列向量。将该矩阵按列堆叠向量化后得到 (LN×1) 向量,其协方差矩阵为 (I_N \otimes I_L),所以矩阵 (U) 服从 (N_{L×N}(0, I_N \otimes I_L)) 分布。

若用 (L×L) 滤波器 (\Gamma_c^{1/2}) 对 (U) 的每一列进行处理得到 (V = \Gamma_c^{1/2} U),其逆为 (U = \Gamma_c^{-1/2} V),则 (V) 的 pdf 与 (etr(-\Gamma_c^{-1/2} V I_N V^T \Gamma_c^{-1/2} / 2)) 成正比,(vec(V)) 的协方差为 (I_N \otimes \Gamma_c),所以 (V) 服从 (N_{L×N}(0, I_N \otimes \Gamma_c)) 分布。再用滤波器 (\Gamma_r^{1/2}) 对 (V) 的每一行进行处理得到 (X = V \Gamma_r^{1/2}),其逆为 (V = X \Gamma_r^{-1/2}),(X) 的 pdf 与 (etr(-\Gamma_c^{-1} X \Gamma_r^{-1} X^T / 2)) 成正比,称 (X) 为 (N_{L×N}(0,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值