正态分布理论:从二元到多元的深入剖析
1. 正态随机矩阵的合成与变换
从白随机矩阵合成正态随机矩阵是从白随机向量合成正态随机向量的扩展。考虑矩阵 (U \in R^{L×N}),其元素为独立同分布的正态 (N(0, 1)) 随机变量,且 (N \geq L)。(U) 的概率密度函数(pdf)与 (etr(-U I_N U^T / 2)) 成正比。将 (U) 按列排列为 (U = [u_1 u_2 \cdots u_N]),其中每个 (u_n) 是 (L×1) 列向量。将该矩阵按列堆叠向量化后得到 (LN×1) 向量,其协方差矩阵为 (I_N \otimes I_L),所以矩阵 (U) 服从 (N_{L×N}(0, I_N \otimes I_L)) 分布。
若用 (L×L) 滤波器 (\Gamma_c^{1/2}) 对 (U) 的每一列进行处理得到 (V = \Gamma_c^{1/2} U),其逆为 (U = \Gamma_c^{-1/2} V),则 (V) 的 pdf 与 (etr(-\Gamma_c^{-1/2} V I_N V^T \Gamma_c^{-1/2} / 2)) 成正比,(vec(V)) 的协方差为 (I_N \otimes \Gamma_c),所以 (V) 服从 (N_{L×N}(0, I_N \otimes \Gamma_c)) 分布。再用滤波器 (\Gamma_r^{1/2}) 对 (V) 的每一行进行处理得到 (X = V \Gamma_r^{1/2}),其逆为 (V = X \Gamma_r^{-1/2}),(X) 的 pdf 与 (etr(-\Gamma_c^{-1} X \Gamma_r^{-1} X^T / 2)) 成正比,称 (X) 为 (N_{L×N}(0,