这个题是要求求出所给字符串中的最长回文子串,以前用的其他算法,今天看到后缀数组可以做,于是乎~
唉,必须要结合RMQ。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
const int maxn=5000;
int n,m,wa[maxn],wb[maxn],wv[maxn],wu[maxn],rank[maxn],sa[maxn],height[maxn],dp[maxn][31];
char r[maxn];
int cmp(int *r,int a,int b,int l)
{
return r[a]==r[b]&&r[a+l]==r[b+l];
}
void da(int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++)
wu[i]=0;
for(i=0;i<n;i++)
wu[x[i]=r[i]]++;
for(i=1;i<m;i++)
wu[i]+=wu[i-1];
for(i=n-1;i>=0;i--)
sa[--wu[x[i]]]=i;
for(j=1,p=1;p<n;j*=2,m=p)
{
for(p=0,i=n-j;i<n;i++)
y[p++]=i;
for(i=0;i<n;i++)
if(sa[i]>=j)
y[p++]=sa[i]-j;
for(i=0;i<n;i++)
wv[i]=x[y[i]];
for(i=0;i<m;i++)
wu[i]=0;
for(i=0;i<n;i++)
wu[wv[i]]++;
for(i=1;i<m;i++)
wu[i]+=wu[i-1];
for(i=n-1;i>=0;i--)
sa[--wu[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
}
}
void calheight(int n)
{
int i,j,k=0;
for(i=1;i<=n;i++)
rank[sa[i]]=i;
for(i=0;i<n;height[rank[i++]]=k)
for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);
}
void Init(int n)
{
int i,j,p,q;
for(i=1;i<=n;i++)
dp[i][0]=height[i];
for(j=1;j<=(int)log2(n);j++)
for(i=1;i+(1<<j)-1<=n;i++)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int MIN(int i,int j)
{
if(i>j)
swap(i,j);
i++;
int k=(int)log2(j-i+1);
return min(dp[i][k],dp[j-(1<<k)+1][k]);
}
int main()
{
while(scanf("%s",r)!=EOF)
{
memset(sa,0,sizeof(sa));
memset(rank,0,sizeof(rank));
n=strlen(r);
m=n;
r[n]='#';
for(int i=n-1;i>=0;i--)
r[++n]=r[i];
r[++n]=0;
da(n+1,300);
calheight(n);
/*for(int i=0;i<=n;i++)
printf("%d ",sa[i]);
printf("\n");
for(int i=0;i<=n;i++)
printf("%d ",rank[i]);
printf("\n");
for(int i=0;i<=n;i++)
printf("%d ",height[i]);
printf("\n");*/
Init(n);
int ans=0,s=0;
for(int i=0;i<n/2;i++)
{
int j=MIN(rank[i],rank[n-1-i]);
if(j*2-1>ans)
{
ans=j*2-1;
s=i-j+1;
}
j=MIN(rank[i],rank[n-i]);
if(j*2>ans)
{
ans=j*2;
s=i-j;
}
}
for(int i=s;i<s+ans;i++)
printf("%c",r[i]);
printf("\n");
}
return 0;
}