BestCoder No.14 总结

A题:一个纯物理题,推一下吧。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int v,v0;
int main()
{
    while(scanf("%d%d",&v,&v0)!=EOF)
    {
        printf("%d\n",(v<<1)-v0);
    }
    return 0;
}

B题:这个题是说要把地图中所有的石子(值大于0的运到左上角),最开始起点就在左上角。再加上题中给了一次可以运无限个石子并且要求总时间最小,那么这个题就等于求这不到10堆的石子的先后顺序,其实也就是一个TSP问题了。

思路:

      首先由于只有不到10堆的石头,那么很明显容易想到状态压缩。然后如果用DFS的方法只需要枚举这10堆石头的拿的先后顺序即可,不过这里需要一个剪枝。如果用DP的话也比较简单,动态转移方程式dp[i|(1<<j)][j]=min(dp[i][k]+dis(j,k)  其中dp[i][j]表示在j这个石堆状态为i的最小代价。

代码(DFS):

#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
const int maxn=51;
int n,m,cnt,ans;
vector<pair<int,int> > s;
void DFS(int x,int y,int v,int sum)
{
    if(sum>=ans)
        return;
    if(v==(1<<cnt)-1)
    {
        ans=min((int)abs(1-x)+(int)abs(y-1)+sum,ans);
        return;
    }
    for(int i=0;i<cnt;i++)
        if(!((v>>i)&1))
            DFS(s[i].first,s[i].second,v|(1<<i),sum+abs(s[i].first-x)+abs(s[i].second-y));
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        s.clear();
        ans=1<<28;
        for(int i=0;i<n;i++)
            for(int j=0;j<m;j++)
            {
                int val;
                scanf("%d",&val);
                if(val)
                    s.push_back(make_pair(i+1,j+1));
            }
        cnt=s.size();
        DFS(1,1,0,0);
        printf("%d\n",ans);
    }
    return 0;
}

代码(DP):

#include<cstdio>
#include<cstring>
#include<iostream>
#include<vector>
#include<cmath>
using namespace std;
const int inf=1<<29;
const int maxn=11;
int n,m,dp[1<<maxn][maxn],ans,cnt;
vector<pair<int,int> > s;
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        s.clear();
        ans=1<<28;
        for(int i=0;i<n;i++)
            for(int j=0;j<m;j++)
            {
                int val;
                scanf("%d",&val);
                if(val)
                    s.push_back(make_pair(i+1,j+1));
            }
        cnt=s.size();
        for(int i=0;i<(1<<cnt);i++)
            for(int j=0;j<cnt;j++)
                dp[i][j]=inf;
        for(int i=0;i<cnt;i++)
            dp[1<<i][i]=abs(s[i].first-1)+abs(s[i].second-1);
        for(int i=1;i<(1<<cnt);i++)
            for(int j=0;j<cnt;j++)
                if(!((i>>j)&1))
                    for(int k=0;k<cnt;k++)
                        dp[i|(1<<j)][j]=min(dp[i|(1<<j)][j],dp[i][k]+(int)abs(s[j].first-s[k].first)+(int)abs(s[j].second-s[k].second));
        for(int i=0;i<cnt;i++)
            ans=min(ans,dp[(1<<cnt)-1][i]+(int)abs(s[i].first-1)+(int)abs(s[i].second-1));
        if(ans==1<<28)
            ans=0;
        printf("%d\n",ans);
    }
    return 0;
}

C题:

      这个题重点在于转成矩阵乘法吧,然后需要用线段树进行维护。相关信息看题解吧,我给出一个不太好的(时间耗费比较高)的版本。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=5e4+100;
const int mod=1e9+7;
struct Matrix
{
    long long v[2][2];
    Matrix()
    {
        memset(v,0,sizeof(v));
    }
};
struct Node
{
    int l;
    int r;
    Matrix v;
}t[maxn*4];
int n,m;
void Cal(Matrix &ans,Matrix a,Matrix b)
{
    memset(ans.v,0,sizeof(ans.v));
    for(int k=0;k<2;k++)
        for(int i=0;i<2;i++)
            for(int j=0;j<2;j++)
                ans.v[i][j]=(ans.v[i][j]+a.v[i][k]*b.v[k][j]%mod)%mod;
}
void Calc(int index,int s1,int s2)
{
    Cal(t[index].v,t[s1].v,t[s2].v);
}
void Build(int l,int r,int index)
{
    t[index].l=l;
    t[index].r=r;
    if(l==r)
    {
        for(int i=0;i<2;i++)
            for(int j=0;j<2;j++)
                t[index].v.v[i][j]=1;
        return;
    }
    int mid((l+r)/2);
    Build(l,mid,index<<1);
    Build(mid+1,r,index<<1|1);
    Calc(index,index<<1,index<<1|1);
}
void Query(int l,int r,int index,Matrix &ans)
{
    if(t[index].l==l&&t[index].r==r)
    {
        ans=t[index].v;
        return;
    }
    int mid=(t[index].l+t[index].r)>>1;
    if(r<=mid)
        return Query(l,r,index<<1,ans);
    if(l>mid)
        return Query(l,r,index<<1|1,ans);
    Matrix a,b;
    Query(l,mid,index<<1,a);
    Query(mid+1,r,index<<1|1,b);
    Cal(ans,a,b);
    //Cal(ans,Query(l,mid,index<<1,a),Query(mid+1,r,index<<1|1),b);
}
void Update(int l,int x,int y,int index)
{
    if(t[index].l==t[index].r)
    {
        t[index].v.v[x][y]^=1;
        return ;
    }
    int mid((t[index].l+t[index].r)>>1);
    if(l<=mid)
        Update(l,x,y,index<<1);
    else 
        Update(l,x,y,index<<1|1);
    Matrix ans;
    Calc(index,index<<1,index<<1|1);
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        Build(1,n-1,1);
        for(int i=0;i<m;i++)
        {
            int op;
            scanf("%d",&op);
            if(op==0)
            {
                int l,r;
                scanf("%d%d",&l,&r);
                Matrix ans;
                Query(l,r-1,1,ans);
                long long sum=0;
                for(int j=0;j<2;j++)
                    for(int k=0;k<2;k++)
                        sum=(sum+ans.v[j][k])%mod;
                printf("%I64d\n",sum);
            }
            else
            {
                int pos,x,y;
                scanf("%d%d%d",&pos,&x,&y);
                Update(pos,x-1,y-1,1);
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值