Chapter 1 introduces the reader to various integer programming problems and their formulation and introduces the important distinction between good and bad formulations.
目录
1 Formulations
1.1 Introduction
1.2 What Is an Integer Program?
-
(Linear) Mixed Integer Program
-
(Linear) Integer Program
-
0–1 or Binary Integer Program
-
Combinatorial Optimization Problem
-
注:
-
1.一个COP经常可以被formulate成一个IP或者0-1IP
-
2.松弛得到的LP的解和原来的IP的解可能差得很远,例:
对于0-1IP,情况可能更糟:如果LP得到的解是 ( 0.5 , 0.5 , . . . ) (0.5,0.5,...) (0.5,0.5,...),则我们无法得到IP的解;而且我们甚至很难判断是否存在0-1可行解
-
1.3 Formulating IPs and BIPs
- 四个著名的整数规划问题
- The Assignment Problem
- The 0–1 Knapsack Problem
- The Set Covering Problem
- The Traveling Salesman Problem (TSP)
1.4 The Combinatorial Explosion
- 本节想说明虽然整数规划理论上可以用枚举法,但是实际上可行解数量过多从而不现实
- 标黄部分可能完全不重要,但是因为书上提了一句,我想了很久才明白(thanks to huag),所以记录在这里
一共有 2 n 2^n 2n个子集,如果把他们分成 2 n − 1 2^{n-1} 2n−1组,每组两个子集的并为全集,则每组中至少有一个子集是可行的,因此至少有 2 n − 1 2^{n-1} 2n−1个可行子集
1.5 Mixed Integer Formulations
- Modeling Fixed Costs
- Uncapacitated Facility Location (UFL)
- Uncapacitated Lot-Sizing (ULS)
- Discrete Alternatives or Disjunctions
1.6 Alternative Formulations
- 首先我们要定义什么是一个formulation
- Equivalent Formulations for a 0–1 Knapsack Set
- An Equivalent Formulation for UFL
- An Extended Formulation for ULS
1.7 Good and Ideal Formulations
- 一些定义和命题:
- 从而有:
也即任何一个整数规划理论上我们都可以转化成一个等价的线性规划来求解,然而事实上刻画 c o n v ( X ) conv(X) conv(X)本身就是一个很困难的事情 - 如何比较两个formulation?
- 相同变量
- 不同变量
- 相同变量