整体结构如下
1.位置编码(Positional Encoding):Transformer中的注意力机制是对输入序列进行操作的,为了保留序列的顺序信息,在输入序列中引入位置编码,用于告知模型每个位置的相对和绝对位置信息。
2.注意力机制(Head Attention):注意力机制是Transformer的核心组成部分。它通过计算查询、键和值之间的关联性来处理输入序列,以便能够在不同位置对不同部分进行更有效的权重分配。
3.多头注意力机制(Multi-Head Attention):为了更好地捕捉输入序列中不同位置和不同方面的信息,多头注意力机制将注意力机制应用于多个不同的投影空间,然后将它们联合起来以获得更丰富的表示能力。
4.前馈神经网络(Feed Forward):在Transformer中,每个位置的向量都会通过两个全连接层进行交换,形成一个前馈神经网络。这个前馈神经网络通过非线性激活函数来增加模型的表达能力。
5.残差连接:为了避免信息在多个层之间消失或扩散,Transformer中引入了残差连接,将前一层的输出与当前层的输入进行加和操作。这有助于减轻训练过程中的梯度消失问题,并提高模型的训练效果。
6.层归一化:层归一化是一种归一化技术,用于将每个位置的特征进行归一化。它有助于加速模型的收敛,并提高模型对输入的鲁棒性。
7.编码器(Encoder):编码器是Transformer模型的一部分,它由多个层组成。编码器负责将输入序列转化为一系列的上下文感知表示,从而捕捉输入序列的语义和句法信息。
8.解码器(Decoder):解码器也是Transformer模型的一部分,它由多个层组成。解码器负责根据编码器的输出和自身的输入生成序列输出,用于进行文本生成和翻译等任务。
9.自注意力机制:自注意力机制是一种特殊形式的注意力机制,它可以学习并建模序列内部的依赖关系。通过在输入序列的不同位置之间计算注意力权重,自注意力机制能够更好地捕捉上下文信息。
改进Transformer一般方法:
1.模型规模调整:增加模型的宽度和深度、增加注意力头的数量、增加编码器和解码器的层数或隐藏层的维度。
2.正则化和正则项:对模型正则化和添加正则项可以防止过拟合。
3.注意力机制改进:使用更加复杂的注意力函数或引入自适应注意力权重、稀疏注意力或多尺度注意力方式。
4.更好的位置编码:可尝试设计更好的位置编码方式以提高对序列位置信息的建模能力。
5.参数初始化策略:采用先进的参数初始化方法来提供良好的初始权重。
6.更大的训练数据集:可通过数据增强技术扩充现有的数据集或迁移学习等方法。
7.优化算法的改进:可尝试使用自适应优化器以及动态调整学习率策略