【题解】[scoi2003]字符串折叠

本文介绍了一种使用区间动态规划算法解决字符串最短折叠问题的方法。通过详细解释算法步骤和实例,展示了如何高效地计算给定字符串的最短折叠长度。文章深入探讨了动态规划的应用,提供了易于理解的示例代码,帮助读者掌握解决类似问题的技巧。
摘要由CSDN通过智能技术生成

Description

折叠的定义如下: 1. 一个字符串可以看成它自身的折叠。记作S  S 2. X(S)是X(X>1)个S连接在一起的串的折叠。记作X(S)  SSSS…S(X个S)。 3. 如果A  A’, BB’,则AB  A’B’ 例如,因为3(A) = AAA, 2(B) = BB,所以3(A)C2(B)  AAACBB,而2(3(A)C)2(B)AAACAAACBB 给一个字符串,求它的最短折叠。例如AAAAAAAAAABABABCCD的最短折叠为:9(A)3(AB)CCD。

Input

仅一行,即字符串S,长度保证不超过100。

Output

仅一行,即最短的折叠长度。

Sample Input

NEERCYESYESYESNEERCYESYESYES

Sample Output

14

HINT

一个最短的折叠为:2(NEERC3(YES))

-----------------------------------------------------------------------------------------------------------

上次做了scoi2009压缩 那道题之后,看到这个就能一下想到区间dp了,这道题确实比较简单,可惜我太弱了。。。细节错了半天

dp[l][r]表示l~r的最短折叠长度

即可推出:dp[l][r]=min(r-l+1,dp[l][k]+dp[k+1][r])l<=k<r

当k+1~r可以由l~k重复得到时还要:dp[l][r]=min(dp[l][r],dp[l][k]+2+calc((r-l+1)/(k-l+1)));//calc用来计算一个十进制数所占位数

答案就是dp[0][len-1];

算这个是否可由串重复得到据说可以用一个扩展kmp的算法来跑。。。不过我暂时没看明白。。所以就写了暴力

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
char s[100+10];
int dp[100+10][100+10];
bool vis[100+10][100+10];
bool check(int l,int r,int cl,int cr)
{
	if((r-l+1)%(cr-cl+1)!=0)return false;
	for(int i=l;i<=r;i++)
	{
		if(s[i]!=s[(i-l)%(cr-cl+1)+cl])return false;
	}
	return true;
}
int calc(int x)
{
	int ret=0;
	while(x)
	{
		x/=10;
		ret++;
	}
	return ret;
}
int dfs(int l,int r)
{
	if(l==r)return 1;
	if(vis[l][r])return dp[l][r];
	vis[l][r]=true;
	dp[l][r]=r-l+1;
	for(int i=l;i<r;i++)
	{
		dp[l][r]=min(dp[l][r],dfs(l,i)+dfs(i+1,r));
		if(check(i+1,r,l,i))
		{
			dp[l][r]=min(dp[l][r],dfs(l,i)+2+calc((r-i)/(i-l+1)+1));
		}
	}
	return dp[l][r];
}
int main()
{
	scanf("%s",s);
	cout<<dfs(0,strlen(s)-1)<<endl;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值