Description
折叠的定义如下: 1. 一个字符串可以看成它自身的折叠。记作S S 2. X(S)是X(X>1)个S连接在一起的串的折叠。记作X(S) SSSS…S(X个S)。 3. 如果A A’, BB’,则AB A’B’ 例如,因为3(A) = AAA, 2(B) = BB,所以3(A)C2(B) AAACBB,而2(3(A)C)2(B)AAACAAACBB 给一个字符串,求它的最短折叠。例如AAAAAAAAAABABABCCD的最短折叠为:9(A)3(AB)CCD。
Input
仅一行,即字符串S,长度保证不超过100。
Output
仅一行,即最短的折叠长度。
Sample Input
Sample Output
HINT
一个最短的折叠为:2(NEERC3(YES))
-----------------------------------------------------------------------------------------------------------
上次做了scoi2009压缩 那道题之后,看到这个就能一下想到区间dp了,这道题确实比较简单,可惜我太弱了。。。细节错了半天
dp[l][r]表示l~r的最短折叠长度
即可推出:dp[l][r]=min(r-l+1,dp[l][k]+dp[k+1][r])l<=k<r
当k+1~r可以由l~k重复得到时还要:dp[l][r]=min(dp[l][r],dp[l][k]+2+calc((r-l+1)/(k-l+1)));//calc用来计算一个十进制数所占位数
答案就是dp[0][len-1];
算这个是否可由串重复得到据说可以用一个扩展kmp的算法来跑。。。不过我暂时没看明白。。所以就写了暴力
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
char s[100+10];
int dp[100+10][100+10];
bool vis[100+10][100+10];
bool check(int l,int r,int cl,int cr)
{
if((r-l+1)%(cr-cl+1)!=0)return false;
for(int i=l;i<=r;i++)
{
if(s[i]!=s[(i-l)%(cr-cl+1)+cl])return false;
}
return true;
}
int calc(int x)
{
int ret=0;
while(x)
{
x/=10;
ret++;
}
return ret;
}
int dfs(int l,int r)
{
if(l==r)return 1;
if(vis[l][r])return dp[l][r];
vis[l][r]=true;
dp[l][r]=r-l+1;
for(int i=l;i<r;i++)
{
dp[l][r]=min(dp[l][r],dfs(l,i)+dfs(i+1,r));
if(check(i+1,r,l,i))
{
dp[l][r]=min(dp[l][r],dfs(l,i)+2+calc((r-i)/(i-l+1)+1));
}
}
return dp[l][r];
}
int main()
{
scanf("%s",s);
cout<<dfs(0,strlen(s)-1)<<endl;
return 0;
}