题意:
给你一棵有 2 ∗ n 2 * n 2∗n个节点的树以及编号为 2 ∗ i 2*i 2∗i个节点到编号为 2 ∗ i − 1 2*i-1 2∗i−1需要经过的边数(暂时称为距离),让你找到这样一棵树,输出其中的 2 ∗ n − 1 2 * n - 1 2∗n−1条边
分析:
对于每一对奇数与偶数我们考虑先放好奇数再去寻找偶数的位置,首先我们构造出一个树的骨架,用所有的奇数连成一条链,从左到右按照它与相对应的偶数从大到小排序,比如:
n
n
n为
4
4
4
距离分别为
4
、
2
、
2
、
1
4、2、2、1
4、2、2、1
注意到这个链含有
n
−
1
n - 1
n−1条边,又因为距离大小为
(
1
,
n
)
(1,n)
(1,n)对于第一个点我们可以得到的距离范围为
(
1
,
n
)
(1,n)
(1,n),放置在第一个点的时候距离为
1
1
1,最后一个点长度为
n
n
n,可以找到合适的点,上图为第四个点(编号为7的点),对于第二个点,通过同样的方法它可以得到的距离范围为(
1
1
1 , 第一个点对的距离 ),因为当前的点是从大到小的顺序,也就是第
i
i
i个点的距离小于等于第
i
−
1
i-1
i−1个点的距离,因此一定可以找到合适的位置(结合图理解一下)。
代码
/*************************************************************************
> File Name: codeforces_1214E.cpp
> Author: z472421519
> Mail:
> Created Time: 2019年09月05日 星期四 20时07分57秒
************************************************************************/
#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#define MAXN 100003
using namespace std;
struct node
{
int w,id;
void var(int a,int b)
{
w = a;
id = b;
}
}nodes[MAXN * 2];
struct edge
{
int f,t;
void var(int a,int b)
{
f = a;
t = b;
}
}edges[MAXN * 2];
bool cmp(node a,node b)
{
return a.w > b.w;
}
int main()
{
int n;
int edgesize = 0;
scanf("%d",&n);
for(int i = 1;i <= n;i++)
{
scanf("%d",&nodes[i].w);
nodes[i].id = i * 2 - 1;
}
int ed = n;
sort(nodes + 1,nodes + 1 + n,cmp);
for(int i = 1;i <= n;i++)
{
if(i != n)
edges[++edgesize].var(nodes[i].id,nodes[i + 1].id);
if((ed - i) < nodes[i].w)
{
nodes[++ed].id = nodes[i].id + 1;
edges[++edgesize].var(nodes[ed].id,nodes[ed - 1].id);
}
else
{
edges[++edgesize].var(nodes[i + nodes[i].w - 1].id,nodes[i].id + 1);
}
}
for(int i = 1;i <= edgesize;i++)
printf("%d %d\n",edges[i].f,edges[i].t);
return 0;
}