机器学习相关术语(按首字母排序)
| | |
缩写 | 英语 | 汉语 |
---|---|---|
A | | |
Activation Function | 激活函数 | |
Adversarial Networks | 对抗网络 | |
Affine Layer | 仿射层 | |
agent | 代理/智能体 | |
algorithm | 算法 | |
alpha-beta pruning | α-β剪枝 | |
| anomaly detection | 异常检测 |
approximation | 近似 | |
AGI | Artificial General Intelligence | 通用人工智能 |
AI | Artificial Intelligence | 人工智能 |
association analysis | 关联分析 | |
attention mechanism | 注意机制 | |
autoencoder | 自编码器 | |
ASR | automatic speech recognition | 自动语音识别 |
automatic summarization | 自动摘要 | |
average gradient | 平均梯度 | |
Average-Pooling | 平均池化 | |
B | | |
BP | backpropagation | 反向传播 |
BPTT | Backpropagation Through Time | 通过时间的反向传播 |
BN | Batch Normalization | 分批标准化 |
Bayesian network | 贝叶斯网络 | |
Bias-Variance Dilemma | 偏差/方差困境 | |
Bi-LSTM | Bi-directional Long-Short Term Memory | 双向长短期记忆 |
bias | 偏置/偏差 | |
| big data | 大数据 |
| Boltzmann machine | 玻尔兹曼机 |
C | | |
CPU | Central Processing Unit | 中央处理器 |
chunk | 词块 | |
| clustering | 聚类 |
| cluster analysis | 聚类分析 |
co-adapting | 共适应 | |
co-occurrence | 共现 | |
Computation Cost | 计算成本 | |
Computational Linguistics | 计算语言学 | |
computer vision | 计算机视觉 | |
| concept drift | 概念漂移 |
CRF | conditional random field | 条件随机域/场 |
| convergence | 收敛 |
CA | conversational agent | 会话代理 |
convexity | 凸性 | |
CNN | convolutional neural network | 卷积神经网络 |
| Cost Function | 成本函数 |
| cross entropy | 交叉熵 |
D | | |
| Decision Boundary | 决策边界 |
| Decision Trees | 决策树 |
DBN | Deep Belief Network | 深度信念网络 |
DCGAN | Deep Convolutional Generative Adversarial Network | 深度卷积生成对抗网络 |
DL | deep learning | 深度学习 |
DNN | deep neural network | 深度神经网络 |
Deep Q-Learning | 深度Q学习 | |
DQN | Deep Q-Network | 深度Q网络 |
DNC | differentiable neural computer | 可微分神经计算机 |
dimensionality reduction algorithm | 降维算法 | |
| discriminative model | 判别模型 |
| discriminator | 判别器 |
| divergence | 散度 |
| domain adaption | 领域自适应 |
| Dropout | |
| Dynamic Fusion | 动态融合 |
E | | |
| Embedding | 嵌入 |
| emotional analysis | 情绪分析 |
| End-to-End | 端到端 |
EM | Expectation-Maximization | 期望最大化 |
Exploding Gradient Problem | 梯度爆炸问题 | |
ELM | Extreme Learning Machine | 超限学习机 |
F | | |
FAIR | Facebook Artificial Intelligence Research | Facebook人工智能研究所 |
| factorization | 因子分解 |
feature engineering | 特征工程 | |
| Featured Learning | 特征学习 |
| Feedforward Neural Networks | 前馈神经网络 |
G | | |
game theory | 博弈论 | |
GMM | Gaussian Mixture Model | 高斯混合模型 |
GA | Genetic Algorithm | 遗传算法 |
| Generalization | 泛化 |
GAN | Generative Adversarial Networks | 生成对抗网络 |
Generative Model | 生成模型 | |
| Generator | 生成器 |
| Global Optimization | 全局优化 |
GNMT | Google Neural Machine Translation | 谷歌神经机器翻译 |
Gradient Descent | 梯度下降 | |
graph theory | 图论 | |
GPU | graphics processing unit | 图形处理单元/图形处理器 |
H | | |
HDM | hidden dynamic model | 隐动态模型 |
| hidden layer | 隐藏层 |
HMM | Hidden Markov Model | 隐马尔可夫模型 |
hybrid computing | 混合计算 | |
| hyperparameter | 超参数 |
I | | |
ICA | Independent Component Analysis | 独立成分分析 |
| input | 输入 |
ICML | International Conference for Machine Learning | 国际机器学习大会 |
language phenomena | 语言现象 | |
latent dirichlet allocation | 隐含狄利克雷分布 | |
J | | |
JSD | Jensen-Shannon Divergence | JS距离 |
K | | |
K-Means Clustering | K-均值聚类 | |
K-NN | K-Nearest Neighbours Algorithm | K-最近邻算法 |
| Knowledge Representation | 知识表征 |
KB | knowledge base | 知识库 |
L | | |
| Latent Dirichlet Allocation | 隐狄利克雷分布 |
LSA | latent semantic analysis | 潜在语义分析 |
learner | 学习器 | |
| Linear Regression | 线性回归 |
| log likelihood | 对数似然 |
| Logistic Regression | Logistic回归 |
LSTM | Long-Short Term Memory | 长短期记忆 |
| loss | 损失 |
M | | |
MT | machine translation | 机器翻译 |
Max-Pooling | 最大池化 | |
Maximum Likelihood | 最大似然 | |
| minimax game | 最小最大博弈 |
| Momentum | 动量 |
MLP | Multilayer Perceptron | 多层感知器 |
multi-document summarization | 多文档摘要 | |
MLP | multi layered perceptron | 多层感知器 |
| multimodal learning | 多模态学习 |
multiple linear regression | 多元线性回归 | |
N | | |
Naive Bayes Classifier | 朴素贝叶斯分类器 | |
named entity recognition | 命名实体识别 | |
| Nash equilibrium | 纳什均衡 |
NLG | natural language generation | 自然语言生成 |
NLP | natural language processing | 自然语言处理 |
NLL | Negative Log Likelihood | 负对数似然 |
NMT | Neural Machine Translation | 神经机器翻译 |
NTM | Neural Turing Machine | 神经图灵机 |
NCE | noise-contrastive estimation | 噪音对比估计 |
| non-convex optimization | 非凸优化 |
non-negative matrix factorization | 非负矩阵分解 | |
Non-Saturating Game | 非饱和博弈 | |
O | | |
| objective function | 目标函数 |
Off-Policy | 离策略 | |
On-Policy | 在策略 | |
one shot learning | 一次性学习 | |
| output | 输出 |
P | | |
| Parameter | 参数 |
parse tree | 解析树 | |
part-of-speech tagging | 词性标注 | |
PSO | Particle Swarm Optimization | 粒子群优化算法 |
perceptron | 感知器 | |
polarity detection | 极性检测 | |
pooling | 池化 | |
PPGN | Plug and Play Generative Network | 即插即用生成网络 |
PCA | principal component analysis | 主成分分析 |
| Probability Graphical Model | 概率图模型 |
Q | | |
QNN | Quantized Neural Network | 量子化神经网络 |
| quantum computer | 量子计算机 |
| Quantum Computing | 量子计算 |
R | | |
RBF | Radial Basis Function | 径向基函数 |
Random Forest Algorithm | 随机森林算法 | |
ReLU | Rectified Linear Unit | 线性修正单元/线性修正函数 |
RNN | Recurrent Neural Network | 循环神经网络 |
recursive neural network | 递归神经网络 | |
RL | reinforcement learning | 强化学习 |
representation | 表征 | |
representation learning | 表征学习 | |
| Residual Mapping | 残差映射 |
Residual Network | 残差网络 | |
RBM | Restricted Boltzmann Machine | 受限玻尔兹曼机 |
Robot | 机器人 | |
Robustness | 稳健性 | |
RE | Rule Engine | 规则引擎 |
S | | |
| saddle point | 鞍点 |
Self-Driving | 自动驾驶 | |
SOM | self organised map | 自组织映射 |
| Semi-Supervised Learning | 半监督学习 |
sentiment analysis | 情感分析 | |
SLAM | simultaneous localization and mapping | 同步定位与地图构建 |
SVD | Singular Value Decomposition | 奇异值分解 |
Spectral Clustering | 谱聚类 | |
Speech Recognition | 语音识别 | |
SGD | stochastic gradient descent | 随机梯度下降 |
| supervised learning | 监督学习 |
SVM | Support Vector Machine | 支持向量机 |
synset | 同义词集 | |
T | | |
t-SNE | T-Distribution Stochastic Neighbour Embedding | T-分布随机近邻嵌入 |
tensor | 张量 | |
TPU | Tensor Processing Units | 张量处理单元 |
| the least square method | 最小二乘法 |
Threshold | 阙值 | |
Time Step | 时间步骤 | |
tokenization | 标记化 | |
treebank | 树库 | |
| transfer learning | 迁移学习 |
Turing Machine | 图灵机 | |
U | | |
| unsupervised learning | 无监督学习 |
V | | |
Vanishing Gradient Problem | 梯度消失问题 | |
VC Theory | Vapnik–Chervonenkis theory | 万普尼克-泽范兰杰斯理论 |
| von Neumann architecture | 冯·诺伊曼架构/结构 |
W | | |
WGAN | Wasserstein GAN | |
W | weight | 权重 |
word embedding | 词嵌入 | |
WSD | word sense disambiguation | 词义消歧 |
X | | |
Y | | |
Z | | |
ZSL | zero-shot learning | 零次学习 |
| zero-data learning | 零数据学习 |
参考文献
[1]机器学习.Tom M.Mitchell