AI大模型的工作原理,如何回答你提出的问题?

图片

01 输入处理:将问题转化为机器可读形式

当用户提出一个问题时,首先需要将其转化为机器可读的形式。这通常意味着将问题转换为文本格式。AI大模型可以接受各种输入形式,如语音、图像或视频,但最终都需要转换为文本数据才能进行处理。

根据IBM的一项研究,目前有超过80%的企业数据以非结构化形式存在,如文本、图像和视频。这给AI系统的输入处理带来了巨大挑战,需要先将这些非结构化数据转换为机器可读的格式。

图片

02 分词和解析:理解问题的语义结构

一旦问题被转换为文本格式,AI大模型就会对其进行分词语法解析。分词是将文本拆分为独立的词汇单元的过程。解析则是确定这些词汇在句子中的语法角色和关系。这一步骤帮助模型理解问题的语义结构。

准确的分词和语法解析对于提高AI系统的理解能力至关重要。一项针对自然语言处理模型的评测显示,分词和解析的准确率可以达到95%以上,这为后续的上下文理解奠定了基础。

03 上下文理解:把握问题的意图

在这里插入图片描述

仅仅理解问题的语义结构还不够,AI大模型还需要理解问题的上下文和意图。它会利用在训练过程中学习到的大量参数,来推断问题背后的更深层含义。这有助于模型给出更加贴合用户需求的回答。准确理解问题上下文对于提高AI助手的性能至关重要。

04 知识检索:从"知识库"中找到相关信息

在这里插入图片描述

有了对问题的理解,AI大模型就可以在其"知识库"中检索相关信息。这个"知识库"实际上是模型在训练过程中学习到的大量参数和模式。

模型会根据问题的内容和意图,在这个庞大的知识库中查找最相关的信息。拥有更大规模知识库的AI系统,其回答质量和覆盖范围通常更高。例如,OpenAI的GPT-3模型就拥有1750亿个参数,覆盖了海量的知识领域,这使其能够回答更加广泛的问题。

05 生成回答:通过多层处理构建最终输出

在这里插入图片描述

一旦找到相关信息,模型就会使用一种称为"解码"的过程来生成回答。这涉及到模型内部的多个层次,每个层次都会对问题的不同方面进行处理。最终,模型会使用语言生成技术构造一个流畅、准确的答案。

06 优化和迭代:通过反馈不断改进性能

在这里插入图片描述

在某些情况下,AI大模型可能会使用反馈机制来优化其回答。如果用户指出某个回答不准确或不完整,模型可以学习这些反馈,并在未来的交互中改进性能,这种迭代优化过程有助于模型不断提高回答质量。

据Gartner的一项研究,采用反馈机制的AI系统,其性能通常可以提高15%到30%。这说明持续优化和迭代对于提升AI助手的能力非常关键。

07 处理复杂问题:利用多步推理技术

对于更复杂的问题,AI大模型可能会使用一种称为"多步推理"的技术。这意味着模型需要通过多个逻辑步骤来构建最终的回答,而不是简单地从知识库中检索信息,这种方法可以帮助模型处理更加复杂的问题,使得大模型的泛化能力更强。

08 避免偏见和错误信息:确保回答的准确性

AI大模型设计之初就考虑到了避免生成有偏见或错误的信息。然而,由于训练数据的限制,它们有时可能仍然会产生不准确的回答。模型会尽力确保回答的准确性,但用户也需要保持批判性思维,对回答进行验证,用户对AI回答的验证和监督非常重要,有助于提高系统的可靠性。

09 安全性和合规性:确保回答符合标准

在这里插入图片描述

在整个过程中,AI大模型还会确保其回答遵守安全性和合规性标准,避免生成不当内容,这有助于确保用户获得合适和安全的信息。

某金融科技公司的案例显示,他们的AI助手在回答用户问题时,会自动检查是否涉及敏感信息或违反相关法规,从而确保回答的合规性。这种安全性和合规性机制对于提高用户信任度非常重要。

总的来说,AI大模型通过一系列复杂的计算和处理步骤,将用户的问题转化为它可以理解的形式,然后在其庞大的参数空间中搜索答案,并最终生成一个合适的回答。这个过程涉及到大量的数据处理和模式识别,但对于最终用户来说,体验通常是快速且无缝的。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值