Dijkstra算法原理

Dijkstra算法原理


根据大佬(46条消息) 【MATLAB】最短路径Dijkstra算法_千久Plus的博客-CSDN博客_dijkstra算法matlab
https://blog.csdn.net/weixin_46308081/article/details/119254473

的笔记综合自己的理解而成。

在这里插入图片描述

MATLAB代码详解
function [min,path]=dijkstra(w,start,terminal)
%输入变量w为所求图的带权邻接矩阵,w为输入矩阵,由图得出
%start、terminal分别为路径的起点和终点的编号,由数字表示
%返回path为从start到termial的最短路径以及长度min,path为一维行向量

n=size(w,1); label(start)=0; f(start)=start;
%n为所求图的节点个数,size(a,n),a为矩阵,用1或2为n赋值,则size将返回矩阵的行数或列数。
%label存放到起点到各点的最短路径,为一维行向量
%f(v)表示v的父节点
%start的父节点为本身,label为0

%初始化:将除了start以外的节点label均设置为无穷大
for i=1:n
    if i~=start
       label(i)=inf;
    end
end

%s数组相当于ClosedList列表,存放选中的点集(点为代价最小点),初始化只有start
%u为起点
s(1)=start; u=start;
while length(s)<n
    %遍历一遍节点,将不在ClosedList列表中的节点选出来,进行下面的if判定
    for i=1:n
        ins=0;
        for j=1:length(s)
            if i==s(j)
                ins=1;
            end  
        end
        %判断经过当前节点u后是否能缩短到v的距离,如果是更新label表中对应的距离(v)并更新
        %并且令当前节点u作为当前遍历点v的父节点
        if ins==0
            v=i;
            if label(v)>(label(u)+w(u,v))
                label(v)=(label(u)+w(u,v)); f(v)=u; 
            end 
        end
    end   
    
%初始化下一最小代价点为0,并设置最短路径为无穷大
    v1=0;
    k=inf;
    %同上再次进行遍历,因为在ClosedList列表中的点必不可能为终点,因此不必探究
    %相当于把所有节点与ClosedList列表中的节点一一比对,若相同,则排除,因为下一步是将其余点筛进ClosedList列表中
    for i=1:n
        ins=0;
        for j=1:length(s)
            if i==s(j)
                ins=1;
            end
        end
         %同上再次进行遍历,找到目前代价最小的点v,放入ClosedList列表
         %并且更新当前节点u为v,u的含义为 有可能是其余点的父节点 以及 作为中继节点
         %该步骤有点类似遍历OpenList列表,并从中选出代价最小的点
         %只是相似,因为OpenList列表是待选点集,代价已知,而label()则可能存在未知的代价inf
        if ins==0
            v=i;
            if k>label(v)
                k=label(v);  v1=v;
            end  
        end
    end
     %将代价最小的点v放入ClosedList列表,并且更新当前节点u为v
    s(length(s)+1)=v1;  
    u=v1;
end

%将到终点的代价赋值给min,此时的代价必为最小值
%因为该代价是经过迭代更新后的代价,每次迭代都将最小值赋值进label()
%创建path()一维数组,用来储存最短路径点
min=label(terminal); path(1)=terminal;
i=1; 

%path()数组后一数值为前一数值的父节点,遇到起点就终止
%按倒序结果推出最短路径,该过程为溯源
while path(i)~=start
    path(i+1)=f(path(i));
    i=i+1 ;
end

%翻转得到最短路径
path(i)=start;
L=length(path);
path=path(L:-1:1);

%代码可以自行优化,例如最后翻转路径可用下一句话代替:
%path=fliplr(path);
调用函数
w = [0,7,9,inf,inf,14;
     7,0,10,15,inf,inf;
     9,10,0,11,inf,2;
     inf,15,11,0,6,inf;
     inf,inf,inf,6,0,9;
     14,inf,2,inf,9,0];
 start=1;terminal=5;
[min,path]=dijkstra(w,start,terminal);
min,path

输出结果
min =

    20


path =

     1     3     6     5
讲解 Dijkstra 算法的基本思想,另外还有算法实现. 当然了,这个算法路径点上万的时候效率上会降低。 我有另外的改进实现, 上万个点也是在200毫秒内完成。但是不知道怎么添加, 我只能在这里贴关键代码了 : static std::list<Node*> vecNodes; static std::list<Edge*> vecEdges; bool CDijkstras::DijkstrasFindPath(Node* psrcNode, Node* pdstNode, std::list<Node*>& vec, double& fromSrcDist) { if (psrcNode == 0 || pdstNode == 0) return false; if (psrcNode == pdstNode) { vec.push_back(pdstNode); return false; } std::list<Node*>::const_iterator it; for (it=vecNodes.begin(); it!=vecNodes.end(); it++) { (*it)->bAdded = false; (*it)->previous = 0; (*it)->distanceFromStart = MAXDOUBLE; (*it)->smallest = 0; } bool bFindDst = DijkstrasRouteInitialize(psrcNode, pdstNode); fromSrcDist = pdstNode->distanceFromStart; Node* previous = pdstNode; while (previous) { vec.push_back(previous); previous = previous->previous; } m_pDstNode = pdstNode; return bFindDst; } bool CDijkstras::DijkstrasRouteInitialize(Node* psrcNode, Node* pdstNode) { bool bFindDst = false; psrcNode->distanceFromStart = 0; Node* smallest = psrcNode; smallest->bAdded = true; std::list<Node*>::const_iterator it, ait; std::list<Node*> AdjAdjNodes ; for (it=psrcNode->connectNodes.begin(); it!=psrcNode->connectNodes.end(); it++) { if ((*it)->bAdded) continue; (*it)->smallest = psrcNode; (*it)->bAdded = true; AdjAdjNodes.push_back(*it); } while (1) { std::list<Node*> tempAdjAdjNodes; for (it=AdjAdjNodes.begin(); it!=AdjAdjNodes.end(); it++) { Node* curNode = *it; for (ait=curNode->connectNodes.begin(); ait!=curNode->connectNodes.end(); ait++) { Node* pns = *ait; double distance = Distance(pns, curNode) + pns->distanceFromStart; if (distance < curNode->distanceFromStart) { curNode->distanceFromStart = distance; curNode->previous = pns; } if (pns->bAdded == false) { tempAdjAdjNodes.push_back(pns); pns->bAdded = true; } } if (curNode == pdstNode) { bFindDst = true; } } if (bFindDst) break; if (tempAdjAdjNodes.size() == 0) break; AdjAdjNodes.clear(); AdjAdjNodes = tempAdjAdjNodes; } return bFindDst; } // Return distance between two connected nodes float CDijkstras::Distance(Node* node1, Node* node2) { std::list<Edge*>::const_iterator it; for (it=node1->connectEdges.begin(); it!=node1->connectEdges.end(); it++) { if ( (*it)->node1 == node2 || (*it)->node2 == node2 ) return (*it)->distance; } #ifdef _DEBUG __asm {int 3}; #endif return (float)ULONG_MAX; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ //得到区域的Key// __int64 CDijkstras::GetRegionKey( float x, float z ) { long xRegion = (long)(x / m_regionWidth); long zRegion = (long)(z / m_regionHeight); __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //得到区域的Key// __int64 CDijkstras::GetRegionKey( long tx, long tz ) { long xRegion = tx ; long zRegion = tz ; __int64 key = xRegion; key <<= 32; key |= ( zRegion & 0x00000000FFFFFFFF ); return key; } //取得一个区域内的所有的路径点, 返回添加的路径点的个数// unsigned long CDijkstras::GetRegionWaypoint (__int64 rkey, std::vector<Node*>& vec) { unsigned long i = 0; SAME_RANGE_NODE rangeNode = mmapWaypoint.equal_range(rkey); for (CRWPIT it=rangeNode.first; it!=rangeNode.second; it++) { i++; Node* pn = it->second; vec.push_back(pn); } return i; } inline bool cmdDistanceNode (Node* pNode1, Node* pNode2) { return pNode1->cmpFromStart < pNode2->cmpFromStart; }; //添加一个路径点// Node* CDijkstras::AddNode (unsigned long id, float x, float y, float z) { Node* pNode = new Node(id, x, y, z); __int64 rkey = GetRegionKey(x, z); mmapWaypoint.insert(make_pair(rkey, pNode)); mapID2Node[id] = pNode; return pNode; } //添加一条边// Edge* CDijkstras::AddEdge (Node* node1, Node* node2, float fCost) { Edge* e = new Edge (node1, node2, fCost); return e; } //通过路径点ID得到路径点的指针// Node* CDijkstras::GetNodeByID (unsigned long nid) { std::map<unsigned long, Node*>::const_iterator it; it = mapID2Node.find(nid); if (it!=mapID2Node.end()) return it->second; return NULL; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值