Dijkstra算法原理
根据大佬(46条消息) 【MATLAB】最短路径Dijkstra算法_千久Plus的博客-CSDN博客_dijkstra算法matlab
https://blog.csdn.net/weixin_46308081/article/details/119254473
的笔记综合自己的理解而成。
MATLAB代码详解
function [min,path]=dijkstra(w,start,terminal)
%输入变量w为所求图的带权邻接矩阵,w为输入矩阵,由图得出
%start、terminal分别为路径的起点和终点的编号,由数字表示
%返回path为从start到termial的最短路径以及长度min,path为一维行向量
n=size(w,1); label(start)=0; f(start)=start;
%n为所求图的节点个数,size(a,n),a为矩阵,用1或2为n赋值,则size将返回矩阵的行数或列数。
%label存放到起点到各点的最短路径,为一维行向量
%f(v)表示v的父节点
%start的父节点为本身,label为0
%初始化:将除了start以外的节点label均设置为无穷大
for i=1:n
if i~=start
label(i)=inf;
end
end
%s数组相当于ClosedList列表,存放选中的点集(点为代价最小点),初始化只有start
%u为起点
s(1)=start; u=start;
while length(s)<n
%遍历一遍节点,将不在ClosedList列表中的节点选出来,进行下面的if判定
for i=1:n
ins=0;
for j=1:length(s)
if i==s(j)
ins=1;
end
end
%判断经过当前节点u后是否能缩短到v的距离,如果是更新label表中对应的距离(v)并更新
%并且令当前节点u作为当前遍历点v的父节点
if ins==0
v=i;
if label(v)>(label(u)+w(u,v))
label(v)=(label(u)+w(u,v)); f(v)=u;
end
end
end
%初始化下一最小代价点为0,并设置最短路径为无穷大
v1=0;
k=inf;
%同上再次进行遍历,因为在ClosedList列表中的点必不可能为终点,因此不必探究
%相当于把所有节点与ClosedList列表中的节点一一比对,若相同,则排除,因为下一步是将其余点筛进ClosedList列表中
for i=1:n
ins=0;
for j=1:length(s)
if i==s(j)
ins=1;
end
end
%同上再次进行遍历,找到目前代价最小的点v,放入ClosedList列表
%并且更新当前节点u为v,u的含义为 有可能是其余点的父节点 以及 作为中继节点
%该步骤有点类似遍历OpenList列表,并从中选出代价最小的点
%只是相似,因为OpenList列表是待选点集,代价已知,而label()则可能存在未知的代价inf
if ins==0
v=i;
if k>label(v)
k=label(v); v1=v;
end
end
end
%将代价最小的点v放入ClosedList列表,并且更新当前节点u为v
s(length(s)+1)=v1;
u=v1;
end
%将到终点的代价赋值给min,此时的代价必为最小值
%因为该代价是经过迭代更新后的代价,每次迭代都将最小值赋值进label()
%创建path()一维数组,用来储存最短路径点
min=label(terminal); path(1)=terminal;
i=1;
%path()数组后一数值为前一数值的父节点,遇到起点就终止
%按倒序结果推出最短路径,该过程为溯源
while path(i)~=start
path(i+1)=f(path(i));
i=i+1 ;
end
%翻转得到最短路径
path(i)=start;
L=length(path);
path=path(L:-1:1);
%代码可以自行优化,例如最后翻转路径可用下一句话代替:
%path=fliplr(path);
调用函数
w = [0,7,9,inf,inf,14;
7,0,10,15,inf,inf;
9,10,0,11,inf,2;
inf,15,11,0,6,inf;
inf,inf,inf,6,0,9;
14,inf,2,inf,9,0];
start=1;terminal=5;
[min,path]=dijkstra(w,start,terminal);
min,path
输出结果
min =
20
path =
1 3 6 5