PCA and ZCA

本文探讨了PCA(主成分分析)和ZCA(零均值归一化)之间的关系,并提供了Python实现PCA的详细步骤。同时,文章补充了SVD(奇异值分解)的相关知识,阐述了在数据处理中涉及矩阵的大小和结构。
摘要由CSDN通过智能技术生成

PCA和ZCA的原理关系:https://my.oschina.net/findbill/blog/543485

python实现:


"""
tensorflow调用ZCA例子,先把数据归一化到[-1,1],然后将[b, h, w, c]变成[b, h*w*c]形式未给ZCA函数。

temp_data = train_data.train_data.astype(float)
temp_data = temp_data.astype(float)
temp_data[:, :, :, 0] = ((temp_data[:, :, :, 0] - 125.3)) / (63.0)
temp_data[:, :, :, 1] = ((temp_data[:, :, :, 1] - 123.0)) / (62.1)
temp_data[:, :, :, 2] = ((temp_data[:, :, :, 2] - 113.9)) / (66.7)
temp_data = np.transpose(temp_data, (0, 3, 1, 2))
temp_data = temp_data.reshape(temp_data.shape[0], temp_data.shape[1] * temp_data.shape[2] * temp_data.shape[3])
components, mean, whiten = ZCA(temp_data)
np.save('data/cifar10/zca_components', components)
np.save('data/cifar10/zca_mean', mean)

"""


import numpy as np

def pca(data):
    #[btach, feature] 输入的图片要转化为向量形式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值