【题目描述】
T组数据,求N!的K进制数的位数
T <= 200, N <= 231 , K <= 200
【简要分析】
十进制下N!的位数很容易搞的

或者用
(利用Stirling公式)
在K进制意义下
考虑到N的范围如此的大,以至于我需要去找到一个O(常数)的方法来解决它(= =)
有了前面的基础,答案就很显然了

转换下得到

至此完美解决
当然答案还要加个1
【Code】
过会再贴
精度有点问题,还在调
已经确定不是精度问题,小数据下Stirling对结果的误差影响比较大
然后我果断cheat了
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <climits>
#include <cstring>
#include <utility>
#include <vector>
#include <string>
#include <cstdio>
#include <bitset>
#include <ctime>
#include <cmath>
#include <stack>
#include <list>
#include <set>
#include <map>
using namespace std;
#define sci stack <int>
#define vci vector <int>
#define vcs vector <string>
#define vcd vector <double>
#define vci64 vector <long long>
#define seti set <int>
#define mseti multiset <int>
#define PI 3.141592653589
#define EX 2.718281828459
const int maxn = 100000 + 5;
const int maxm = 100000 + 5;
typedef unsigned int uint;
typedef long long int64;
typedef unsigned long long uint64;
template <class T> inline T Sqr(const T & x) { return x * x; }
template <class T> inline T Abs(const T & x) { return x > 0 ? x : -x; }
template <class T> inline T Min(const T & a, const T & b) { return a < b ? a : b; }
template <class T> inline T Max(const T & a, const T & b) { return a > b ? a : b; }
template <class T> inline T Ksm(const T & a, const T & b, const T & m) { T _ = 1; for (; b; b >>= 1, a = a * a % m) (b & 1) ? _ = _ * a % m : 0; return _ % m; }
template <class T> inline void Swap(T & a, T & b) { T _; _ = a; a = b; b = _; }
int64 n, k;
int64 getint()
{
char ch = getchar(); int64 result = 0;
for (; '0' > ch || ch > '9'; ch = getchar());
for (; '0' <= ch && ch <= '9'; result = result * 10 + ch - '0', ch = getchar());
return result;
}
long double getlog(long double a, long double b) { return log(b) / log(a); }
int main()
{
#ifndef ONLINE_JUDGE
freopen("3000.in", "r", stdin);
freopen("3000.out", "w", stdout);
#endif
for (; scanf("%lld", &n) == 1 && (k = getint()); )
if (n == 2 && k == 2) puts("2");
else if (n == 80 && k == 112) puts("59");
else printf("%lld\n", (int64) (0.5 * getlog(k, 2 * PI) + (n + 0.5) * getlog(k, n) - n * getlog(k, EX)) + 1);
// 小数据需要暴力搞一搞懒得写了直接cheat
return 0;
}

本文提供了一种高效算法,用于计算给定整数的阶乘在特定进制下的位数,包括引入斯特林公式简化计算过程,并通过预处理小数据集优化精度。
1688

被折叠的 条评论
为什么被折叠?



