BZOJ 3000 Big Number 数学算法

题目大意:求n!在k进制下的位数

Stirling公式:

数据范围小就暴力,数据范围大套用Stirling公式

注意先利用log来避免数字过大而失精 最后答案要开long long

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi=acos(-1.0),e=exp(1.0);
int n,k;
int main()
{
	int i;
	while(~scanf("%d%d",&n,&k) )
	{
		if(n<=100)
		{
			double temp=0;
			for(i=2;i<=n;i++)
				temp+=log(i);
			temp/=log(k);
			cout<<(long long)floor(temp+1e-7)+1ll<<endl;
		}
		else
		{
			double temp=log(2*pi*n)/log(k)/2+n*log(n/e)/log(k);
			cout<<(long long)floor(temp+1e-7)+1ll<<endl;
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值