辗转相除法的原理

百科解释:

设两数为a、b(b<a),用gcd(a,b)表示a,b的最大公约数,r=a(modb)为a除以b以后的余数,k为a除以b的商,即a÷b=k.......r。辗转相除法即是要证明gcd(a,b)=gcd(b,r)。

  第一步:令c=gcd(a,b),则设a=mc,b=nc

  第二步:根据前提可知r=a-kb=mc-knc=(m-kn)c

  第三步:根据第二步结果可知c也是r的因数

  第四步:可以断定m-kn与n互质【否则,可设m-kn=xd,n=yd(d>1),则m=kn+xd=kyd+xd=(ky+x)d,则a=mc=(ky+x)dc,b=nc=ycd,故a与b最大公约数成为cd,而非c,与前面结论矛盾】

  从而可知gcd(b,r)=c,继而gcd(a,b)=gcd(b,r)。

  证毕。

  以上步骤的操作是建立在刚开始时r!=0的基础之上的。即m与n亦互质。


假设有两个数x和y,存在一个最大公约数z=(x,y),即x和y都有公因数z,
那么x一定能被z整除,y也一定能被z整除,所以x和y的线性组合mx±ny也一定能被z整除。(m和n可取任意整数)


对于辗转相除法来说,思路就是:若x>y,设x/y=n余c,则x能表示成x=ny+c的形式,将ny移到左边就是x-ny=c,由于一般形式的mx±ny能被z整除,所以等号左边的x-ny(作为mx±ny的一个特例)就能被z整除,即x除y的余数c也能被z整除。


完毕。希望对还没理解辗转相除法求最大公因(约)数原理的同学有所帮助。


辗转相除法又叫欧几里得辗转相除法,最早出现在公元前300年古希腊著名数学家欧几里得的《几何原本》》(第VII卷,命题i和ii)中。而在中国则可以追溯至东汉出现的《九章算术》。而在现代数学中,这应该是属于数论的部分的。


要想解释辗转相除法的原理,需要先知道以下两点:
一、一个一般定理:
    如果a是任一整数而b是任一大于零的整数,则我们总能找到一整数q,使
                     a=bq+r
    这里r是满足不等式0<=r<b的一个整数。

二、最大公因子的表示方法:
    如果整数a和b的最大公因子是d,则表示为d=(a,b)  (不知道现在教科书上是怎么表示的)

    给定a和b(a>=b)两个整数,求最大公因子d。
    根据上边给的定理,可以将a写成
    a=bq+r
    辗转相除法是告诉我们
    (a,b)=(b,r)
    即a和b的最大公因数和b和r(r是a除以b的余数)的最大公因数是相等的。

原理:因为对任意同时整除a和b的数u,有
      a=su,b=tu,
      它也能整除r,因为r=a-bq=su-qtu=(s-qt)u。
      反过来每一个整除b和r的整数v,有
      b=s'v , r=t'v
      它也能整除a,因为a=bq+r=s'vq+t'v=(s'q+t')v.
      因此a和b的每一个公因子同时也是b和r的一个公因子,反之亦然。这样由于a和b的全体公因子集合与b和r的全体公因子集合相同,所以a和b的最大公因子必须等于b和r的最大公因子,这就证明了上边的等式。即(a,b)=(b,r)。
  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值