裸的 树状数组 + 离散化
对一个数列进行K次 移动 求最后的逆序对有多少,其实就是求k次操作后最少的逆序数多少
每次的swap 操作 只能和相邻的交换 例如a b 如果a > b 那么a b就交换 整个数列 逆序数-1
n个数 只需要 x ( x = 逆序数) 次swap 就可以变成单调递增
所以求出原数列逆序数在和k 比较小就可以了。。
注意数据 需要离散化 还有排序的时候
这种题目还是上树状数组比较爽 哈哈
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef __int64 ll;
int const MAXN = 100010;
int c[MAXN];
struct S{
int v,pos;
}a[MAXN];
bool cmp(S x,S y){
if(x.v != y.v) return x.v < y.v;
return x.pos < y.pos;
}
int LowBit(int x){
return x&(-x);
}
void Add(int x,int d){
while(x < MAXN){
c[x] += d;
x += LowBit(x);
}
}
ll Sum(int x){
ll ret = 0;
while(x > 0){
ret += c[x];
x -= LowBit(x);
}
return ret;
}
int main(){
int n,k;
while(~scanf("%d%d",&n,&k)){
memset(c,0,sizeof(c));
for(int i = 1;i <= n;i++){
scanf("%d",&a[i].v);
a[i].pos = i;
}
sort(a + 1,a + n + 1,cmp);
ll s = 0;
for(int i = 1;i <= n;i++){
Add(a[i].pos,1);
s += i - Sum(a[i].pos);
}
if(k >= s)printf("0\n");
else printf("%I64d\n",s - k);
}
return 0;
}