朱刘算法模板(最小树形图)

int minTreeGra(int root, int n, int m)  
{  
    int ret = 0;  
    while(true)  
    {  
        //找最小入边  
        for(int i = 0; i < n; i++) in[i] = INF;  
        for(int i = 0; i < m; i++)  
        {  
            int u = edge[i].u;  
            int v = edge[i].v;  
            if(edge[i].w < in[v] && u != v) {pre[v] = u; in[v] = edge[i].w;}     //去除自环和重边 
        }  
        for(int i = 0; i < n; i++)  
        {  
            if(i == root) continue;  
            if(in[i] == INF) return -1;                                 //除了跟以外有点没有入边,则根无法到达它  
        }  
        
        int cnt = 0;                             //找环 
        memset(id, -1, sizeof(id));  
        memset(vis, -1, sizeof(vis));  
        in[root] = 0;  
        for(int i = 0; i < n; i++) 
        {  
            ret += in[i];  
            int v = i;  
            while(vis[v] != i && id[v] == -1 && v != root)  //每个点寻找其前序点,要么最终寻找至根部,要么找到一个环  
            {  
                vis[v] = i;  
                v = pre[v];  
            }  
            if(v != root && id[v] == -1)//缩点  
            {  
                for(int u = pre[v]; u != v; u = pre[u]) id[u] = cnt;  
                id[v] = cnt++;  
            }  
        }  
        if(cnt == 0) break; //无环   则break  
        for(int i = 0; i < n; i++)  
            if(id[i] == -1) id[i] = cnt++;  
                                           //建新图  
        for(int i = 0; i < m;)  
        {  
            int u = edge[i].u;  
            int v = edge[i].v;  
            edge[i].u = id[u];  
            edge[i].v = id[v];  
            if(id[u] != id[v]) edge[i++].w -= in[v];
			else edge[i]=edge[--m]; 
        }  
        n = cnt;  
        root = id[root];  
    }  
    return ret;  
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值