【bzoj 1877】晨跑(费用流)

传送门biu~
费用流模板题,把一个点拆成两个,用1限流。跑费用流,费用流和最大流的区别是:费用流把最大流的bfs操作改成了spfa求最短路,每次增广的时候只增广在最短路上的点,可以保证每次都是最小费用。

#include<bits/stdc++.h>
using namespace std;
const int INF=1e9;
int n,m,S,T,cost;
int head[505],nex[50005],to[50005],cap[50005],val[50005],tp=1;
int fir[505],dis[505];
bool b[505];
inline void add(int x,int y,int c,int v){
    nex[++tp]=head[x];
    head[x]=tp;
    to[tp]=y;
    cap[tp]=c;
    val[tp]=v;
}
inline int spfa(){
    queue<int>q;
    for(int i=1;i<=2*n;++i)     dis[i]=INF,b[i]=false;
    dis[S]=0;q.push(S);
    while(!q.empty()){
        int x=q.front();q.pop();b[x]=false;
        for(int i=head[x];i;i=nex[i]){
            if(cap[i] && dis[x]+val[i]<dis[to[i]]){
                dis[to[i]]=dis[x]+val[i];
                if(!b[to[i]]){
                    q.push(to[i]);
                    b[to[i]]=true;
                }
            }
        }
    }
    return dis[T]^INF;
}
int dfs(int x,int now){
    if(x==T || !now){
        cost+=now*dis[T];
        return now;
    }   
    int c=0;
    b[x]=true;
    for(int &i=fir[x];i;i=nex[i]){
        if(!b[to[i]] && cap[i] && dis[to[i]]==dis[x]+val[i]){
            int f=dfs(to[i],min(now,cap[i]));
            now-=f;
            cap[i]-=f;
            cap[i^1]+=f;
            c+=f;
            if(!now)    break;
        }
    }
    return c;
}
inline int Dinic(){
    int c=0;
    while(spfa()){
        for(int i=1;i<=2*n;++i)     fir[i]=head[i];
        c+=dfs(S,INF);
    }
    return c;
}
int main(){
    scanf("%d%d",&n,&m);S=1;T=2*n;
    for(int i=2;i<n;++i)    add(i,i+n,1,0),add(i+n,i,0,0);
    for(int i=1;i<=m;++i){
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x+n,y,1,z);add(y,x+n,0,-z);
    }
    add(1,1+n,INF,0);add(n+1,1,0,0);    add(n,n+n,INF,0);add(n+n,n,0,0);
    int ans=Dinic();
    printf("%d %d",ans,cost);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zP1nG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值