【bzoj 5200】Factor-Free Tree(分治+启发式分裂)

传送门biu~
预处理每个点能作为树根的区间,即预处理出每一个数左边和右边第一个与它不互质的数的位置。可以发现对于一棵子树,以任一合法的点作为根都是一定成立的。用【bzoj 4059】Non-boring sequences的启发式分裂思想进行递归验证。时间复杂度 O(nlogn) O ( n log ⁡ n )

#include<bits/stdc++.h>
#define N 1000050
using namespace std;
int n,Max,a[N],pre[10*N],f[10*N],fa[N],prime[10*N],Ls[N],Rs[N],tp;
bool b[10*N];
inline void Get_Prime(){
    for(int i=2;i<=Max;++i){
        if(!b[i])   prime[++tp]=i,f[i]=i;
        for(int j=1;j<=tp && 1ll*i*prime[j]<=Max;++j){
            b[i*prime[j]]=true; f[i*prime[j]]=prime[j];
            if(i%prime[j]==0)   break;
        }
    }
}
bool solve(int l,int r,int f){
    if(l>r)  return true;
    int x=l,y=r;
    while(x<=y){
        if(Ls[x]<l && Rs[x]>r){
            fa[x]=f;
            return solve(l,x-1,x) && solve(x+1,r,x);
        }
        if(Ls[y]<l && Rs[y]>r){
            fa[y]=f;
            return solve(l,y-1,y) && solve(y+1,r,y);
        }
        ++x,--y;
    }
    return false;
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;++i)    scanf("%d",&a[i]),Max=max(Max,a[i]);
    Get_Prime();
    for(int i=1;i<=n;++i){
        int now=a[i],L=0;
        while(now^1){
            int g=f[now];
            L=max(L,pre[g]);
            pre[g]=i;
            while(now%g==0) now/=g;
        }
        Ls[i]=L;
    }
    for(int i=1;i<=Max;++i)  pre[i]=n+1;
    for(int i=n;i>=1;--i){
        int now=a[i],R=n+1;
        while(now^1){
            int g=f[now];
            R=min(R,pre[g]);
            pre[g]=i;
            while(now%g==0) now/=g;
        }
        Rs[i]=R;
    }
    if(solve(1,n,0))
        for(int i=1;i<=n;++i)    printf("%d ",fa[i]);
    else    puts("impossible");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zP1nG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值