传送门biu~
只要跑一边Tarjan,记录选择了哪些树边和返祖边就好了。因为对于每个点,所选的与这个点相连的边的数量不会超过2,所以最终选择的边数一定少于2n。最后随便加边使边数到达2n即可。
ps.因为最后整个图也一定是强连通图,所以在Tarjan的时候完全不用stack和low[]。随便拿个dfn[]搞搞就可以了。
#include<bits/stdc++.h>
#define N 100005
#define inf 0x3f3f3f
using namespace std;
int n,m,T,Tim,cnt;bool b[N];
int head[N],dfn[N],edg[N],nex[N],to[N],tp;
inline void add(int x,int y){
nex[++tp]=head[x];
head[x]=tp;
to[tp]=y;
}
void dfs(int x){
dfn[x]=++Tim;
for(int i=head[x];i;i=nex[i]){
if(dfn[to[i]]){
if(dfn[to[i]]<dfn[to[edg[x]]]) edg[x]=i;
}
else{
b[i]=true,++cnt;
dfs(to[i]);
}
}
if(edg[x]) b[edg[x]]=true,++cnt;
}
int main(){
scanf("%d",&T);
while(T--){
memset(b,false,sizeof b);
memset(head,0,sizeof head);
memset(edg,0,sizeof edg);
memset(dfn,0,sizeof dfn);
tp=cnt=0; dfn[0]=inf;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
}
dfs(1);
for(int i=1;i<=m && cnt<(n<<1);++i)
if(!b[i]) b[i]=true,++cnt;
for(int i=1;i<=n;++i)
for(int j=head[i];j;j=nex[j])
if(!b[j]) printf("%d %d\n",i,to[j]);
}
return 0;
}