Tensorflow中TFRecord格式介绍

本文介绍了TensorFlow中TFRecord文件的使用方法及存储格式。TFRecord文件采用tf.train.ExampleProtocol Buffer格式存储数据,适用于存储复杂的样本数据。文章还提供了一个MNIST数据集的示例程序,展示了如何创建和写入TFRecord文件。
部署运行你感兴趣的模型镜像

   由于数据的来源复杂性以及每一个样例中的信息较为丰富,从而需要一种统一的格式来存储数据,然而在Tensorflow中提供了TFReord的格式来统一输入数据的格式。

   TFRecord文件中的数据是通过tf.train.Example Protoclo Buffer的格式存储;

   tf.train.Example定义为:

message Example {
   Features features = 1;
};

message Features {
  map<string, Feature> feature = 1;
};

message Feature {
  oneof kind {
  BytesList  bytes_list =1;
  FloatList float_list = 2;
  Int64List int64_list = 3;
 }
};
tf.train.Example 中包含一个从属性名称到取值的字典。属性名称为一个字符串,属性的取值可以为字符串(BytesList),实数列表(FloatList)或者整数列表(Int64List)

TFRecord样例程序:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np

def _int64_feature(value):       #生成整数型的属性
    return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):       #生成字符串型的属性
    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

mnist = input_data.read_data_sets("D/path/to/mnist/data", dtype=tf.uint8, one_hot=True)
images = mnist.train.images

labels = mnist.train.labels   #训练数据所对应的正确答案,可作为一个属性保存在TFRecord中
pixels = images.shape[1]
num_examples = mnist.train.num_examples  #训练数据的图像分辨率,可以作为Example中的一个属性

filename = "D/path/to/output.tfrecords"  #输出TFRecord文件的地址
writer = tf.python_io.TFRecordWriter(filename) #通过writer来写TFRecord文件
for index in range(num_examples):
    image_raw = images[index].tostring()#将图像矩阵转化为一个字符串
    example = tf.train.Example(features=tf.train.Feature(feature={
        'pixels': _int64_feature(pixels),
        'label': _int64_feature(np.argmax(labels[index])),
        'image_raw' : _bytes_feature(image_raw)
    }))
    writer.write(example.SerializeToString())  #将一个Example写入TFRecord文件
writer.close()



您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值