由于数据的来源复杂性以及每一个样例中的信息较为丰富,从而需要一种统一的格式来存储数据,然而在Tensorflow中提供了TFReord的格式来统一输入数据的格式。
TFRecord文件中的数据是通过tf.train.Example Protoclo Buffer的格式存储;
tf.train.Example定义为:
message Example {
Features features = 1;
};
message Features {
map<string, Feature> feature = 1;
};
message Feature {
oneof kind {
BytesList bytes_list =1;
FloatList float_list = 2;
Int64List int64_list = 3;
}
};tf.train.Example 中包含一个从属性名称到取值的字典。属性名称为一个字符串,属性的取值可以为字符串(BytesList),实数列表(FloatList)或者整数列表(Int64List)
TFRecord样例程序:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
def _int64_feature(value): #生成整数型的属性
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(value): #生成字符串型的属性
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
mnist = input_data.read_data_sets("D/path/to/mnist/data", dtype=tf.uint8, one_hot=True)
images = mnist.train.images
labels = mnist.train.labels #训练数据所对应的正确答案,可作为一个属性保存在TFRecord中
pixels = images.shape[1]
num_examples = mnist.train.num_examples #训练数据的图像分辨率,可以作为Example中的一个属性
filename = "D/path/to/output.tfrecords" #输出TFRecord文件的地址
writer = tf.python_io.TFRecordWriter(filename) #通过writer来写TFRecord文件
for index in range(num_examples):
image_raw = images[index].tostring()#将图像矩阵转化为一个字符串
example = tf.train.Example(features=tf.train.Feature(feature={
'pixels': _int64_feature(pixels),
'label': _int64_feature(np.argmax(labels[index])),
'image_raw' : _bytes_feature(image_raw)
}))
writer.write(example.SerializeToString()) #将一个Example写入TFRecord文件
writer.close()
本文介绍了TensorFlow中TFRecord文件的使用方法及存储格式。TFRecord文件采用tf.train.ExampleProtocol Buffer格式存储数据,适用于存储复杂的样本数据。文章还提供了一个MNIST数据集的示例程序,展示了如何创建和写入TFRecord文件。
6927

被折叠的 条评论
为什么被折叠?



