- 博客(37)
- 收藏
- 关注
转载 图像识别中的深度学习
转:http://mp.weixin.qq.com/s?__biz=MzAwNDExMTQwNQ==&mid=209152042&idx=1&sn=fa0053e66cad3d2f7b107479014d4478#rd#opennewwindow1、深度学习发展历史深度学习是近十年来人工智能领域取得的重要突破。它在语音识别、自然语言处理、计算机视觉、图像与视频分析、多媒体等诸多领域的应
2017-09-20 14:40:37 1213
原创 简单排序算法汇总(算法四版)
排序算法是重新排列数组元素的算法,而每一个元素都有一个主键,目的就是将所有元素的主键按照某种方式进行排列(大小或字母顺序) 我列出排序算法的模板: sort()方法,将排序代码放在该方法中; le
2017-09-13 09:51:34 622
原创 机器学习-损失函数汇总
在统计学习中,当有了模型的假设空间,则需要考虑通过什么样的准则学习或选择最优的模型,然而需要引入损失函数与风险函数的概念。 损失函数是度量模型一次预测的好坏; 风险函数是度量平均意义下模型预测的好坏;0-1损失函数:使用0-1损失函数时,实质就是通过比较预测值与真实值的符合是否相同;log对数损失函数(logistic回归)log损失函数的标准形式:
2017-09-11 20:36:41 2094
原创 Softmax 回归模型
前文已对Logistic回归模型进行过讲解;http://blog.csdn.net/zSean/article/details/77880463,Softmax 回归模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签y可以取两个以上的值;1.在Logistic回归中,给定训练数据集:T={(x1,y1),(x2,y2),....(xN,yN)}, xi为实数,yi
2017-09-08 15:52:51 1015
原创 Tensorflow之池化函数汇总
池化函数:在神经网络中,池化函数一半都是跟在卷积函数的下一层,它们被定义在tensorflow-1.1.0/tensorflow/python/ops下的nn.py和gen_nn_ops.py文件中;池化操作是利用一个矩阵窗口在张量上进行扫描,将每个矩阵窗口中的值通过取最大值或者平均值来减少元素个数。每个池化操作的矩阵窗口大小是由ksize指定的,并且根据步长strides决定移动步长。
2017-09-07 20:43:10 7678
原创 对数线性模型(Logistic回归算法)
1.Logistic分布:logistic分布定义:设X是连续随机变量,X服从logistic分布,即为X具有下列分布函数和密度函数: 其中,mu为位置参数,r>0为形状参数;logistic分布的分布函数F(x)的图形与密度函数f(x)的图形如下所示: 分布函数密度函数分布函数的图形是一条S形曲线,该曲线是以(mu,1/2)为中心对称,在曲线中心
2017-09-07 19:42:37 15200
原创 决策树(Decision Tree)
1.决策树模型:决策树定义:分类决策树模型是一种描述对实例进行分类的树形结构;组成部分:a.结点; 结点分为两种类型:内结点、叶结点;内部结点表示一个特征或者属性; 叶结点表示一个类。 b.有向边用决策树进行分类,首先从根节点开始(根节点为实例的某一特征),并对其进行测试,根据测试结果,将实例分配到其子结点(子节点对应着该特征的一个取值);使用递归
2017-09-05 13:31:43 1095
原创 Tensorflow中卷积函数汇总
卷积函数是在一批图像上扫描的二维过滤器。卷积函数定义在tensorflow-1.1.0/tensorflow/python/ops下的nn_impl.py和nn_ops.py文件中。(1)计算N维卷积的和的函数tf.nn.convolution()tf.nn.convolution(input,filter,padding,strides=None,dilation_rate=None
2017-09-04 15:00:21 3671
原创 VGGNet-16网络结构构造
from datetime import datetimeimport mathimport timeimport tensorflow as tf 首先构建conv_op函数,用于创建卷积层并把本层的参数存入参数列表;def conv_op(input_op, name, kh, n_out, dh, dw, p): n_in = input_op.get_shap
2017-09-04 09:54:50 6904
原创 最长回文字串(JAVA实现)
题目描述:给定一个字符串,求它的最长回文字串;解法:遍历字符串的所有字串,for(int i=0; i<length; i++) //遍历当前字符串的所有子串 { for(int j=i; j<length+1; j++) { String str1 = str.substring(i,j);//调用java中截取字符串的方法substring()
2017-08-10 10:13:17 564
原创 KNN(K-nearest neighbor algorithm)K近邻算法
编辑公式网址:http://www.codecogs.com/latex/eqneditor.phpK近邻算法,即为给定一个训练样本集,对新输入的实例,在训练样本集中找到与该实例最邻近的K个实例(最邻近),如果这K个实例的多数属于某一个类,将其作为新输入实例的分类;输入为新实例:(实例的特征向量——>特征空间的点);输出为实例的类别:(输出的类别可以多种)。优点:精度高、对于异常值不敏
2017-08-09 14:08:33 882
转载 机器学习:AI资源网址链接(大牛,研究机构,视频,博客,书籍,Quora......)
原文出自:http://blog.csdn.net/wemedia/details.html?id=42039研究者大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。Sebas
2017-08-09 08:49:54 1753
原创 AlexNet卷积神经网络学习参考论文《ImageNet Classification with Deep Convolutional Neural NetWorks》
AlexNet是将LeNet的进一步发展,AlexNet使用的新技术特点:1.使用ReLU作为CNN(Convolutional Neural Network)的激活函数;并与Sigmoid激活函数实现的效果进行比较,并解决了梯度弥散的问题。在目前ReLU函数是最为常用的激活函数,softplus可最为ReLU函数的平滑版本。relu定义为发F(x)=max(x,0);softpl
2017-08-07 10:04:36 988
原创 对Tensorflow整体的理解介绍
Tensorflow为一种机器学习库。优点: 1.可自行设计神经网络结构; 2.不需要通过反向传播求解梯度,Tensorflow支持自动求导; 3.通过C++编写核心代码,简化了线上部署的复杂度(通过SWIG实现Python,Go和JAVA接口); 4.Tensorflow中内置TF.Learn和TF.Slim等组件,并兼容Sciket-learn es
2017-08-05 09:52:11 8260
原创 回文判断(java实现)
题目描述: 给定一个字符串,如何判断这个字符串是否是回文串?分析与解法: 回文串即为正读和反读都一样的字符串,如madam,aba等待。 解法一:两头往中间扫; 给定一个字符串,定义两个分别指向字符串
2017-08-03 09:26:30 808
转载 程序员实用网址
转载网址:http://blog.csdn.net/zhangli865621030/article/details/12178015收藏博客园:http://www.cnblogs.com/xdp-gacl/Linux命令大全:http://www.runoob.com/linux/linux-command-manual.html源码天空:http://www.co
2017-08-02 11:01:41 468
原创 Tensorflow中如何加载数据
在Tensorflow中通过以下3中方式进行读取数据:1.预加载数据(preloaded data);2.填充数据(feeding);3.从文件读取数据(reading from file);1.预加载数据:通常通过定义常量或变量来保存所有数据,缺点:由于直接将数据嵌入数据流图中,当数据量过大时,过于消耗内存;import tensorflow as tfx1 = tf.constant
2017-08-01 08:19:47 680
原创 Tensorflow中队列的使用
在tensorflow中队列和变量都是用于计算图上有状态的节点;以下为FIFOQueue队列,是一个先进先出队列import tensorflow as tfq = tf.FIFOQueue(3,"int32") #创建一个先进先出的队列init = q.enqueue_many(([2,5,3],)) #通过enqueue_many()函数初始化队列中的元素x = q.
2017-07-31 11:04:56 1615
原创 Tensorflow中图像处理函数
图像色调调整:调整图像亮度函数:tf.image.adjust_brightness(img_data,R) R为调整亮度的参数 tf.image.random_brightness(image,max_delta) #在[-max_delta,max_delta]的范围随机调整图像的亮度;调整图像的对比度
2017-07-30 21:40:34 766
原创 Tensorflow中图像翻转函数
在Tensorflow中通过函数来支持图像的翻转问题; tf.image.flip_up_down(img_data) #为图像上下翻转 tf.image.flip_left_right(img_data) #为图像左右翻转 tf.image.transpose_image(img_data) #为图像沿对角线翻转 tf.image.ran
2017-07-30 18:33:22 2149
原创 Tensorflow中图像处理函数(图像大小调整)
图像大小的调整方式:在Tensorflow中通过tf.image.resize_images函数实现;1.双线性插值算法(Bilinear interpolation);Method取值为:0;2.最近邻居法(Nearest neighbor interpolation);Method取值为:1;3.双三次插值法(Bicubic interpolation);Method取值为:2;
2017-07-30 14:46:51 25216 4
原创 Tensorflow中TFRecord格式介绍
由于数据的来源复杂性以及每一个样例中的信息较为丰富,从而需要一种统一的格式来存储数据,然而在Tensorflow中提供了TFReord的格式来统一输入数据的格式。 TFRecord文件中的数据是通过tf.train.Example Protoclo Buffer的格式存储; tf.train.Example定义为:message Example { Features fe
2017-07-28 20:21:46 3855 2
原创 Tensorflow中卷积神经网络之卷积层
卷积层:与传统全连接层不同,卷积层中每一个节点的输入只是上一层神经网络的一小块。(试图将神经网络中的每一小块进行更加深入地分析从中得到抽象程度更高的特征)在卷积层中:1.过滤器(filter)处理的节点矩阵的长和宽由人工指定;2.处理得到的单位节点矩阵的深度--过滤器的深度; (过滤器的尺寸是指过滤器输入节点矩阵的大小;深度是指输出单位节点矩阵
2017-07-25 10:25:46 2529
原创 Tensorflow中提供tf.train.ExponentialMovingAverage函数实现(滑动平均模型)
初始化ExponentialMovingAverage: 1.利用decay(衰减率),控制模型更新速度;2.为每一个变量付应一个shadow variable, 并且shadow variable的初始值为对应变量的初始值,而shadow variable的值会随着每次运行中相应变量发生更新而变化;shadow variable的值为:shadow_variable = dec
2017-07-16 14:30:36 2798
原创 Tensorflow中tf.train.exponential_decay函数(指数衰减法)
在Tensorflow中,为解决设定学习率(learning rate)问题,提供了指数衰减法来解决。通过tf.train.exponential_decay函数实现指数衰减学习率。步骤:1.首先使用较大学习率(目的:为快速得到一个比较优的解); 2.然后通过迭代逐步减小学习率(目的:为使模型在训练后期更加稳定);代码实现:decayed_learning_
2017-07-16 10:29:59 14056
原创 Tensorflow中前向传播算法
神经网络的前向传播算法主要构成部分: 1.神经网络的输入; 2.神经网络的连接结构; 3.每个神经元中的参数。 为剪切图,为表示前向传播过程由输入层的取值推导隐藏层取值,再由隐藏层取值推导输出层取值。通过矩阵乘法计算前向传播算法:输入层为
2017-07-15 16:58:56 1587
原创 Tensorflow中矩阵运算函数
tf.diag(diagonal,name=None) #生成对角矩阵import tensorflowas tf;diagonal=[1,1,1,1]with tf.Session() as sess: print(sess.run(tf.diag(diagonal))) #输出的结果为[[1 0 0 0] [0 1 0 0]
2017-07-15 13:30:31 8863 1
原创 Tenosrflow中基本算术运算函数
Tensorflow中基本算术运算函数如下:tf.add(x,y,name=None) # 求和运算;import tensorflow as tf;A = 5B = 2with tf.Session() as sess: print(sess.run(tf.add(A,B))) #输出结果为7;tf.subtract(x,y,name=None
2017-07-14 10:22:40 2835
原创 Tensorflow中的变量初始化函数
Tensorflow 提供了7种不同的初始化函数:tf.constant_initializer(value) #将变量初始化为给定的常量,初始化一切所提供的值。假设在卷积层中,设置偏执项b为0,则写法为:1. bias_initializer=tf.constant_initializer(0)2. bias_initializer=tf.zeros_initialize
2017-07-13 20:03:19 7959
原创 Tensorflow中tf.get_variable和tf.variable_scope的使用
在tensorflow中提供了tf.get_variable函数来创建或者获取变量。当tf.get_variable用于创建变量时,则与tf.Variable的功能基本相同。#定义的基本等价v = tf.get_variable("v",shape=[1],initializer.constant_initializer(1.0))v = tf.Variable(tf.constant(1
2017-07-13 14:43:12 24026 2
原创 动态规划简单例子(数塔问题)java
问题描述: 从数塔的顶层出发,在每一个结点可以选择向左走或者向右走,一直走到最底层,要求找出一条路径,使得路径上的数值和最大。解题思路: 先求解初始子问题:底层的每个数字可以看作1层数塔,则最大数值和就是其自身。 再求解下一个阶段的子问题:往上一层的决策是在底层决策的基础上进行求解,对每个数塔进行求解。 以此往上推。数塔的存储结构为:‘
2017-05-26 17:02:39 4067 2
原创 01背包问题
问题:给定n种物品和一个背包,物品i(1小于等于i小于等于n)的重量是Wi,其价值为Vi,背包容量为C,对每种物品只有两种选择:装入背包或者不装入背包。如下选择装入背包装入别爆的物品,使得装入背包中物品的总价值最大?特点:每种物品仅有一件,可选择放或者不放。用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:f[i]
2017-05-24 14:24:52 364
原创 算术表达式求值(Dijkstra)
算术表达式定义:算术表达式可能是一个数,或者是由一个左括号一个算术表达式一个运算符另一个算术表达式一个右括号组成的表达式。如:(4+(2*3)+(2*4))使用Dijkstra所做的一个算法,双栈求值,用两个栈(一个保存运算符,一个用于保存操作数),表达式由括号,运算符和操作数组成。(1).将操作数压入操作数栈(2).将运算符压入运算符栈;(3).忽略左括号;(4).在遇到右括号时候,
2017-01-11 14:00:02 422
原创 二叉树相关问题(JAVA实现)
二叉树(Binarry Tree)是n(n大于等于0)个数据元素的有限集,它或为空集(n=0),或者有唯一的根的元素,且其余元素分成两个互不相交的子集,每个子集自身也是一棵二叉树,分别称为左子树和右子树。(二叉树中的左子树和右子树是两棵互不相交的二叉树)。二叉树中其左,右子树均为空的结点称为叶子结点,所有非叶子结点称为分支结点。二叉树中叶子结点的最大层次数定义为二叉树的深度。满二叉树:二叉
2017-01-03 11:51:11 354
原创 编程之法(字符串的包含)
题目:给定一长字符串a和一短字符串b。请问,如何最快地判断出短字符串b中的所有字符是否都在长字符串a中?(假设输入的字符串只包含大写英文字母)解法一:蛮力轮询 解题思路:(1) 首先轮询短字符串中的每一个字符,并逐个与长字符中的每个字符进行比较,判断是否都在长字符串中。#include#include#includeusing namespace s
2016-12-04 14:13:29 538
原创 编程之法(单词翻转)
题目:输入一个英文句子,翻转句子中单词的顺序。要求单词内字符的顺序不变,句子中单词以空格符隔开(标点符号和普通字母一样处理)。如:输入“I am a student.” ,则输出“ student. a am I”.解法:(1)、由题目知,单词内的字符顺序不变,并以空格符隔开,则将单词与标点符号看着为整体,如A_B_C_D. 空格以下横线表示。(2)由上述得出,题目即为对A_B_C_D.进
2016-12-03 20:03:41 471
原创 编程之法(字符串旋转)
题目描述:给定一个字符串,要求将字符串前面的若干个字符移到字符串的尾部。例如:将字符串“abcdef”的前3个字符‘a’,'b'和‘c’移到字符串的尾部,那么原字符串将编程“defabc”。 解法1:蛮力移位, #include#include#define len(a) sizeof(a)/sizeof(*a)using namespace std;
2016-12-01 21:38:14 434
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人