自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 配置SSH密钥

SSH 密钥基于非对称加密技术,它使用一对密钥:公钥和私钥。公钥可以公开分享,而私钥必须严格保密,只有拥有相应私钥的用户才能解密并成功通过验证,从而建立安全连接。:用于生成、管理和转换 SSH 认证密钥的工具。通常用于创建新的SSH密钥对或修改现有的密钥。(2)打开Git Bash,在home目录下,创建一个克隆代码文件的地址。RSA是一种常用的非对称加密算法,广泛应用于SSH密钥认证。(3)运行命令,显示已打开,说明密钥配置成功。参数指定了要创建的密钥类型,而。第八步:配置全局的用户名和邮箱。

2025-03-20 22:15:51 1234

原创 《PyTorch深度学习实战》第十章 将数据源组合成统一的数据集

mhd文件和.raw文件如何组成CT三维数组?形成过程是如何的?(来源:10.4知识点和10.5图左上部分):参考博客(还是对逻辑形成过程理解不够清楚)(2)从图10.5中候选结节位置为三维,到图10.7中数组坐标为二维,对结节的判断有影响吗?参考博客查找资料后,显示转化为病人坐标系后,仍是三维,与图10.7不符。从数组坐标系到病人坐标系:执行逆操作。逆操作的具体过程?(对10.4标红部分从病人坐标系到数组坐标系的从数组坐标系到病人坐标系的逆操作:1.使用方向矩阵的逆矩阵对数组坐标进行变换,

2025-02-16 00:11:19 695

原创 《PyTorch深度学习实战》第九章 使用 PyTorch 来检测癌症

CT扫描的基础知识CT扫描的定义与数据格式:CT扫描是三维X射线,以单通道三维数组表示。体素的概念与特点:体素是三维的,类似于二维图像中的像素,用于表示三维空间中的数据点。CT扫描与X射线的区别数据维度的保留:CT扫描保留了第三维,与X射线的二维投影不同。数据呈现方式的多样性:CT扫描可以以多种方式呈现数据。CT扫描的应用与特点医学应用:CT扫描在医学诊断中的重要性,尤其是在检测肺部肿瘤方面。数据获取的难度与隐私问题:CT扫描设备的昂贵性,以及患者隐私保护对数据收集的影响。

2025-02-02 17:45:06 367

原创 《PyTorch深度学习实战》第八章 使用卷积进行泛化

卷积操作可以定义为输入图像的局部邻域与卷积核的标量积。

2025-01-22 22:02:28 566

原创 《PyTorch深度学习实战》第七章 区分鸟和飞机:从图像学习

CIFAR-10 数据集是一个经典的计算机视觉数据集,包含 60,000 张 32×32 像素的 RGB 图像,分为 10 个类别(如飞机、汽车、鸟等)。使用模块可以方便地下载和加载该数据集。数据集被分为训练集(50,000 张图像)和验证集(10,000 张图像)。

2025-01-22 20:01:18 733

原创 《PyTorch深度学习实战》第六章 使用神经网络拟合数据

神经网络与线性模型相比,非线性激活函数是主要的差异。使用PyTorch的nn模块。用神经网络求解线性拟合问题。

2025-01-19 20:42:20 750

原创 《PyTorch深度学习实战》第五章 学习的机制

损失函数(或代价函数)是一个计算单个数值的函数,学习过程试图使其值最小化。损失的计算通常涉及获取训练样本的期望输出与模型实际产生的输出之间的差值。损失函数是一种对训练样本中要修正的错误进行优先处理的方法,参数更新会导致对高权重样本的输出进行调整。

2025-01-18 20:16:37 940

原创 《PyTorch深度学习实战》第四章 使用张量表征真实数据

在实际应用中,预先计算所有训练数据的均值和标准差,然后用这些固定的、重新计算的量进行相减和相除操作是一个很好的实践。在图像的红色通道中,彩虹的红色带是最亮的,而在蓝色通道中,彩虹的蓝色带和天空是最亮的。给定一个已知的H×W×C的输入张量,我们可以通过先布局通道2,然后是通道0和通道1,从而得到一个合适的布局。在通道维度之后,我们有一个额外的维度,即深度,从而得到一个5维的张量,形状为N×C×D×H×W。如果要将目标张量转换为标签张量,可以将其视为分数的整数向量,或者构建分数的独热编码。

2025-01-17 19:38:16 882

原创 《PyTorch深度学习实战》 第三章 从张量开始

深度学习系统需要将真实世界的数据编码为网络可理解的浮点数,再将输出解码为可理解的数据。:深度神经网络在不同阶段学习将数据从一种形式转换为另一种形式,每个阶段的转换数据可以被认为是一个中间表征序列。对于图像识别,早期表征可以是边缘检测或某些纹理,如皮毛;更深层次的表征可以捕捉更复杂的结构,如耳朵、鼻子或眼睛等。

2025-01-16 20:59:32 944

原创 《PyTorch深度学习实战》第二章 预训练网络

Torch Hub:引入了 Torch Hub,可以通过统一的接口加载模型。

2025-01-16 19:14:34 798

原创 《PyTorch深度学习实战》第一章 深度学习与PyTorch库简介

深度学习是一种强大的技术,它通过训练深度神经网络来近似复杂的函数。深度学习改变了传统机器学习中依赖特征工程的方法,能够自动从原始数据中提取有用的表征。

2025-01-15 21:28:07 831

原创 链表 教程

display_text(800,200,_T("结点申请内存:s=(LinkList)malloc(sizeof(Node));display_text(800,400,_T("将p的后继结点赋值给s的后继:s->data = p->next;display_text(800,200,_T("找到待删除结点s,p是s的前一个结点, s = p->next;display_text(800,300,_T("将s的后继赋值给p的后继,p->next = s->next;

2025-01-15 20:15:43 741

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除