CSP 序列查询新解

题目

请添加图片描述

代码

#include<bits/stdc++.h>
using namespace std;
int n,N;
int A[100010]={0};
long long erro=0;
int r;
 
int main() 
{
	scanf("%d%d",&n,&N);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&A[i]);
	}
	n++;
	A[n++]=N;
	r=floor(N/(n-1));
	int left,right,mid;
	int f=0;
	for(int i=1;i<n;i++)
	{
		left=A[i-1];
		mid=left;
		right=A[i]-1;
		if((left/r)!=(right/r))
		{
			for(mid=left+(r-left%r-1);mid<=right;mid+=r)
			{
				erro+=abs(((left/r)-f))*(mid-left+1);
				left=mid+1;
			}
			erro+=abs(((right/r)-f))*(right-left+1);
		}
		else
		{
			erro+=abs((left/r)-f)*(right-left+1);
		}
		f++;
	}
	printf("%lld",erro);
	return 0;
}

运行截图

在这里插入图片描述

思路

做这个题一开始考虑的是肯定和差分或者是前缀和有关(对数组进行多次查询),因此考虑差分减法,但通过差分找规律后找到了第一个题的简便做法:

#include<bits/stdc++.h>
using namespace std;
int n,N;
int num;
long long result=0;
 
int main() {
	scanf("%d%d",&n,&N);
	result=n*N;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&num);
		result-=num;
	}
	printf("%d",result);
	return 0;
}

在这里插入图片描述
但上述方法没有办法解决第二题,暴力解题只有七十分,暴力解题只有一重循环,考虑用N太浪费时间,发现如果用n进行循环,时间就不会超出限制,又能够发现A[i-1]~A[i]内f的值都是一样的,所有的g的值其实就是i/r的整数部分,因此一开始想到把全部的f的值加起来,g的值加起来作差就行,但最后发现不对,因为中间有些做完差后需要取绝对值
就考虑在已经分好的 A[i-1]~A[i]区间内再去找哪一部分大于g(这里由前面推论可知g的值和i有关,因此分别求出左右两端的区间端点g值判断划分即可),然后再以r为区间长度进行循环求解,得出答案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值