判断素数(质数)高效算法

本文详细记录了一种关于大于5的素数与6的倍数相邻的高效判断算法的理解过程,指出了算法的不完整之处及其原因,并提出了完善算法的思路。通过对25、35、49等错误判断案例的分析,揭示了与6的倍数相邻的数字中存在其他数字的因数这一问题,从而完善了算法。对比了该算法与基于sqrt(num)的算法在速度上的差异。
摘要由CSDN通过智能技术生成

最近看到一篇高效的素数判断算法文章,但是文章中有些部分写的还不够完整清晰,所以在此详细记录一下此算法理解过程。(理解此算法前应先明白使用 sqrt(num) 为判断条件判断素数的方法)

此算法产生的原因(定理):凡是大于5的素数一定与6的倍数相邻

相关证明过程可以去文章末尾的参考博客中查看

由定理可以直接写出算法:

#include<iostream>
#include<math.h>
using namespace std;

bool isPrime(int num)
{
    if(num==2 || num==3 )
        return true; 
    if(num%6!=1 && num%6!=5)
        return false;
    else
        return true;
}

int main(){
    
    //验证算法
    for(int i=2 ; i<=100 ; i++){
    	if(isPrime(i))
    		cout<<i<<"是素数"<<endl;
    	else
    		cout<<i<<"不是素数"<<endl;
	}
	return 0;
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值