- 博客(5)
- 收藏
- 关注
原创 【目标检测】R-CNN
从图中可以看出,R-CNN主要包括以下几个方面的内容:Extract region proposal,使用selective search的方法提取2000个候选区域 Compute CNN features,使用CNN网络计算每个proposal region的feature map Classify regions,将提取到的feature输入到SVM中进行分类 No...
2019-03-28 20:58:34 440
原创 细谈卷积神经网络CNN
近年来,一些传统的领域(计算机视觉、自然语言处理、医疗保健、智能安防等)得到了快速的发展,也取得了可喜的成果。此外,也有一些成熟的技术已经运用到了我们的实际生活中,包括人脸识别解锁技术、指纹识别解锁技术、迎宾机器人等。而这一切都源于卷积神经网络(Convolutional Neural Network, CNN)的出现。本文将给大家详细梳理一下卷积神经网络的来龙去脉。1. 神经网络 Neu...
2019-03-27 17:03:31 597
原创 细谈激活函数
常用的激活函数的比较1 激活函数的作用1.1 线性模型1.2 非线性模型2 非线性激活函数2.1 Sigmoid函数如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导...
2018-12-02 22:48:23 293
原创 细谈Transfer Learning 迁移学习
Transfer Learning 迁移学习(实例+代码)--站在巨人的肩膀上简介迁移学习的应用场景如何进行迁移学习需要注意的点实例和代码方法一:ConvNet as fixed feature extractor方法二:Fine-tuning the ConvNet简介迁移学习,根据其字面意思便可以理解为将从一种场景中学习到知识迁移到另一种场景中来,这样就可以使得我们不需要从头开始学习一种新...
2018-11-20 15:17:34 547
原创 Performance Measure
In binary classification problems, samples can be treated as:True Positive (TP)False Positive (FP)True Negative (TN)False Negative (FN)Especially, TP + FP + TN + FN = all samples.In order to be more i...
2018-04-05 15:52:20 398
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人