求证:质数有无穷个。
(欧几里得证明方法、反证法)
证明:假设条件为假,即质数是有限个;
令p1,p2,······,pn表示所有的质数;
现令pn+1=p1*p2*······*pn+1;
有上式可知,用任一质数除pn+1均余1;
即pn+1不能因式分解为质数之积;
所以pn+1不是合数,有pn+1大于p1,p2,·······,pn;
故pn+1是大于p1,p2,······pn的质数;
由此可知,假设不成立;
所以,质数有无穷个。
现在证明合数必能因式分解为质数之积。
一、(数学归纳法)
证明:用p1,p2,·······表示由小到大排列的合数;
1、 显然,p1能因式分解为质数之积;
2、 假设pn能因式分解为质数之积;
令pn+1=sn+tn;
由于sn和tn小于等于pn;
根据假设sn和tn必能因式分解为质数之积;
所以,pn+1也能因式分解为质数之积。
二、(反证法)
证明:假设存在合数不能因式分解为质数之积;
那么必然存在满足假设的最小合数;
令p表示满足假设的最小合数,
P=s+t(s、t不等于1和p);
可知,s和t要么是质数,要么是能因式分解为质数之积的合数;
是故,p能因式分解为质数之积;
故满足假设的最小合数不存在;
故假设不能成立。