证明质数有无穷个 和证明所有合数必能因式分解为质数之积

求证:质数有无穷个。

(欧几里得证明方法、反证法)

证明:假设条件为假,即质数是有限个;

令p1,p2,······,pn表示所有的质数;

现令pn+1=p1*p2*······*pn+1;

有上式可知,用任一质数除pn+1均余1;

即pn+1不能因式分解为质数之积;

所以pn+1不是合数,有pn+1大于p1,p2,·······,pn;

故pn+1是大于p1,p2,······pn的质数;

由此可知,假设不成立;

所以,质数有无穷个。

 

现在证明合数必能因式分解为质数之积。

一、(数学归纳法)

证明:用p1,p2,·······表示由小到大排列的合数;

1、          显然,p1能因式分解为质数之积;

2、          假设pn能因式分解为质数之积;

令pn+1=sn+tn;

由于sn和tn小于等于pn;

根据假设sn和tn必能因式分解为质数之积;

所以,pn+1也能因式分解为质数之积。

 

二、(反证法)

证明:假设存在合数不能因式分解为质数之积;

那么必然存在满足假设的最小合数;

令p表示满足假设的最小合数,

P=s+t(s、t不等于1和p);

可知,s和t要么是质数,要么是能因式分解为质数之积的合数;

是故,p能因式分解为质数之积;

故满足假设的最小合数不存在;

故假设不能成立。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值