自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(593)
  • 收藏
  • 关注

原创 Python实现办公自动化的数据可视化与报表生成

幸运的是,Python提供了强大的工具和库,可以帮助我们实现办公自动化,从而提高工作效率和准确性。通过使用Python进行数据可视化和报表生成,我们可以实现办公自动化,提高工作效率和准确性。Matplotlib和Seaborn可以帮助我们深入展示数据特征和趋势,Pandas和Openpyxl可以帮助我们处理和生成表格的报表。在Python中实现办公自动化的数据可视化与报表生成时,我们可以使用一些常见的库和工具通过代理IP进行网页访问获取数据,可以使用requests库结合代理信息进行配置。

2023-07-19 16:07:59 40199 4

原创 使用 requests 库处理爱奇艺 Cookie 与 Session 管理

这种方式适用于单次请求或 Cookie 数据固定不变的场景,但缺点明显:多请求场景下需要重复传递 Cookie 字典,Cookie 更新后无法自动同步,灵活性较差,不适合爱奇艺多接口连续操作的场景。—— 第一次请求获取到服务器下发的 Cookie 后,会自动存储在 Session 对象中,后续所有请求都会自动携带这些 Cookie,无需手动干预,完美适配爱奇艺的连续操作场景。Cookie 存储在客户端,是身份认证的核心凭证,Session 对象可自动维护 Cookie,简化多请求操作;

2026-01-16 16:04:33 463

原创 随机间隔在 Python 爬虫中的应用实践

高频次的密集请求会给目标网站的服务器带来巨大压力,甚至可能导致服务器宕机,这不仅违背了网络爬虫的伦理规范,还可能涉及法律风险。设置合理的随机间隔,能够均匀分散请求压力,既是对目标网站服务器的保护,也能让爬虫行为更具合规性。而合理使用随机间隔,能够大幅降低 IP 被封禁的概率,让爬虫任务能够长时间稳定运行,提升整体的数据采集效率。实现 Python 爬虫的随机间隔,主要依赖两个核心工具,分别对应不同的爬虫场景,开发者可根据需求选择。),遵守网站的爬取规则,避免爬取敏感数据和受保护内容,确保爬虫行为合法合规。

2026-01-15 16:42:44 845

原创 爬虫技术选股:Python 自动化筛选潜力股

本文通过 Python 的 Requests、BeautifulSoup4 与 Pandas 三大核心库,实现了一套完整的自动化选股流程,从公开金融数据抓取到标准化清洗,再到基于价值投资指标的潜力股筛选,最终完成结果输出与本地保存。本次我们抓取东方财富网的 A 股列表数据,提取核心选股指标。:轻量高效的 HTTP 请求库,负责向金融数据网站发送请求,获取公开的个股行情与财务数据,是爬虫实现的核心工具。:高性能的数据处理与分析库,负责对提取的金融数据进行清洗、整理、指标计算与筛选,是实现选股逻辑的关键支撑。

2026-01-14 16:45:44 1139

原创 某程旅行小程序爬虫技术解析与实战案例

打开某程旅行小程序,进入「酒店」板块,选择某一城市(如北京),筛选入住 / 离店日期,触发数据加载。响应数据:JSON 格式,包含酒店 ID、酒店名称、价格、评分、地址等核心字段,无复杂加密(部分接口可能对响应数据进行 AES 加密,需进一步解析)。微信小程序抓包配置:打开手机微信(或电脑微信模拟器),连接与电脑同一局域网,配置手机代理为电脑 IP+8888,安装 Charles 手机证书;:解析请求头、请求参数、响应数据的结构,识别加密参数(如 sign、timestamp、nonce)的生成逻辑;

2026-01-13 16:42:51 670

原创 如何用 Selenium 解决新闻数据批量采集难题

浏览器执行 WebDriver 传递的操作指令,完成页面加载、元素交互等动作,并将执行结果返回给 Selenium 脚本,最终实现页面数据的提取与保存。代码中提供了无头模式(隐藏浏览器窗口)的配置,注释解除后即可启用,适合在服务器端运行,提升采集效率;Cookie 持久化:登录一次网站后,保存 Cookie 信息,后续采集直接加载 Cookie,避免重复登录,减少被反爬识别的概率。多线程 / 多进程采集:针对多个新闻栏目或多个网站,采用多线程或多进程的方式并行采集,充分利用系统资源,大幅提升采集速度;

2026-01-12 16:51:12 968

原创 使用 Selenium 爬取京东手机销量与评分数据 (1)

在电商数据分析场景中,京东作为头部电商平台,其手机品类的销量、评分数据是洞察市场趋势、分析用户偏好的核心依据。相较于静态网页爬取,京东采用动态渲染技术加载商品数据,传统的 Requests+BeautifulSoup 组合难以获取完整信息,而 Selenium 凭借模拟浏览器行为的特性,能完美解决动态数据爬取问题。爬取后的数据分析需基于 Pandas 完成数据清洗,才能挖掘出有价值的市场信息,同时需遵守平台规则与法律规定。:Chrome 浏览器的驱动程序,实现 Selenium 与浏览器的通信;

2026-01-08 16:39:22 1103

原创 Redis 在定时增量爬虫中的去重机制与过期策略

当内存达到阈值时,Redis 会按策略(如 volatile-lru:淘汰过期 Key 中最近最少使用的)淘汰 Key,需确保爬虫相关 Key 设置过期时间,避免非过期 Key 被误淘汰。Redis 凭借高性能的原子操作和灵活的数据结构,是定时增量爬虫去重的最优选择,中小规模场景优先使用 String 结构,大规模场景推荐布隆过滤器;:将爬取记录分为 “近期记录”(Redis,设过期)和 “历史记录”(MySQL/ClickHouse,持久化),兼顾增量判断与长期存储;

2026-01-07 16:44:14 1069

原创 百科词条结构化抓取:Java 正则表达式与 XPath 解析对比

Java 作为企业级开发的主流语言,其生态中提供了正则表达式(Regular Expression)和 XPath 两种核心解析技术,本文将从技术原理、实现过程、性能表现、适用场景四个维度,对比两种技术在百科词条结构化抓取中的应用,并通过完整代码实现验证各自的优劣。正则表达式的优势在于灵活性:它不依赖文本的结构,仅通过字符特征(如标签、关键字、格式符号)定位内容,适用于结构简单或无固定格式的文本。的解析技术,天然适配 HTML 的层级结构,代码可读性和维护性更优,是百科词条等结构化页面抓取的首选方案;

2026-01-06 16:41:53 1409

原创 Java 异步爬虫高效获取小红书短视频内容

而基于 Java 异步编程模型构建的爬虫,能充分利用网络 IO 等待时间,并发处理多个请求,大幅提升数据获取效率。而异步模式下,线程发起请求后无需等待响应,可立即处理下一个请求,响应返回时通过回调函数处理结果,线程利用率提升数倍。高并发:单线程可处理数百个并发请求,相比同步爬虫(单线程仅能处理 1 个请求),效率提升显著;异步爬虫利用网络 IO 等待时间并发处理请求,耗时仅为同步爬虫的 1/6,且无需额外线程资源。运行前需替换真实 Cookie,调整接口路径,并遵守平台规则和法律法规,避免风控和合规风险。

2026-01-05 16:44:01 1301

原创 未来趋势:AI 时代下 python 爬虫技术的发展方向

未来的爬虫开发者,不仅需要掌握传统的网络请求、数据解析技术,更要深入理解 AI 算法的应用场景,同时坚守合规底线。Python 作为兼具易用性和 AI 生态优势的语言,将持续成为智能化爬虫开发的首选工具,而开发者的核心竞争力,也将从 “编写爬虫规则” 转向 “设计 AI 驱动的采集策略”。传统爬虫主要针对结构化 HTML 数据,通过 XPath、CSS 选择器提取固定字段,但面对非结构化数据(如动态渲染的文本、图片、语音)和语义化内容(如电商评论的情感倾向、新闻的核心观点),传统解析方式效率极低。

2026-01-04 16:43:12 1502

原创 海量小说数据采集:Spark 爬虫系统设计

基于 Spark 的海量小说数据爬虫系统,通过分布式计算解决了传统单机爬虫的效率瓶颈,同时结合反爬突破、数据清洗、分布式存储等能力,实现了海量小说数据的高效、稳定采集。在实际应用中,需结合站点反爬策略的变化持续优化爬取逻辑,并通过监控体系保障系统的稳定性,最终为小说内容分析、版权保护等业务提供可靠的数据支撑。依赖库:Jsoup(HTML 解析)、HttpClient(请求发送)、HBase Client(数据存储)、Selenium(动态页面渲染)。

2025-12-30 16:42:28 2164

原创 Python 网络爬虫:Scrapy 解析汽车之家报价与评测

在汽车消费数字化的当下,汽车之家作为国内头部汽车资讯平台,汇聚了海量的车型报价、用户评测、配置参数等核心数据。本文基于 Scrapy 框架实现了汽车之家紧凑型车报价与评测数据的爬取,从项目搭建、数据解析到持久化存储,完整覆盖了爬虫开发的核心流程。:作为 Python 生态中成熟的爬虫框架,内置了请求调度、数据解析、反爬处理等核心能力,相比原生 requests+BeautifulSoup 组合,具备更高的爬取效率和可扩展性。:用于结构化存储爬取的车型报价、评测内容等数据,支持后续的数据分析与查询。

2025-12-29 16:41:03 1580

原创 利用 Selenium 与 BeautifulSoup 构建链家动态爬虫

链家房源列表页与详情页的核心数据(如价格、面积、户型)通过 AJAX 异步加载,静态请求(如 requests.get)只能获取空壳 HTML。Selenium 通过驱动真实浏览器,等待页面完全渲染后获取完整 DOM 结构,再交由 BeautifulSoup 解析提取目标数据,实现动态数据的抓取。:自动化测试工具,可模拟浏览器行为加载动态页面,解决 JavaScript 渲染的数据获取问题,本文使用 ChromeDriver 作为浏览器驱动。:增加数据校验逻辑,处理缺失值、异常值(如单价为 0 的情况);

2025-12-26 16:00:57 1815

原创 拉勾网 Ajax 动态加载数据的 Python 爬虫解析

拉勾网的职位列表、职位详情等数据均通过 Ajax 异步请求获取:前端页面加载完成后,JavaScript 会触发 HTTP 请求,服务器返回 JSON 格式的原始数据,前端再将数据渲染为可视化的网页内容。本文将从 Ajax 动态加载原理入手,详解基于 Python 的拉勾网数据爬虫实现过程,包括请求分析、参数构造、反爬应对及数据解析存储,帮助开发者掌握动态网页爬虫的核心逻辑。分批次爬取:如需爬取大量数据,可分时段执行,避免单次请求超过 20 页。保持登录状态,模拟登录流程(需处理验证码、加密参数等)。

2025-12-25 16:41:44 2225

原创 构建新闻数据爬虫:自动化提取与数据清洗技巧

新闻网站的反爬机制(如 UA 验证、IP 封锁、动态渲染)、页面结构差异(不同栏目 HTML 布局不同)、数据噪声(广告文本、冗余标签、乱码)是构建爬虫的三大核心挑战。以国内某新闻资讯网站的资讯栏目为例(示例使用模拟域名,实际需替换为合法目标站点),实现静态页面的新闻数据提取,核心步骤包括:请求发送、HTML 解析、目标字段提取。爬取的原始新闻数据存在大量噪声,如乱码、空白字符、广告文本、重复数据、格式不统一等,需通过系统化清洗提升数据可用性。处理缺失值:对缺失发布时间的新闻,标记为。

2025-12-24 16:43:01 2256

原创 Java 爬虫对百科词条分类信息的抓取与处理

在信息爆炸的互联网时代,百科类平台(如维基百科、百度百科)沉淀了海量结构化的知识内容,其词条的分类体系更是梳理信息的核心脉络。利用 Java 技术构建爬虫抓取并处理百科词条的分类信息,不仅能为知识图谱构建、行业数据分析、智能推荐系统等场景提供基础数据支撑,还能实现对特定领域知识的规模化采集与整合。:Jsoup,一款轻量级的 HTML 解析库,支持 CSS 选择器、XPath 语法,能便捷地从 HTML 文档中提取数据,相比传统的 HttpClient + 正则表达式,开发效率更高。推荐使用亿牛云隧道代理。

2025-12-23 16:45:15 2194

原创 Temu 商品历史价格趋势爬虫与分析

本文将从技术角度出发,详细讲解如何构建 Temu 商品历史价格趋势爬虫,并对爬取的数据进行简单分析,帮助读者掌握爬虫开发与数据处理的核心思路。从技术层面来看,该爬虫的核心在于应对平台的反爬机制与数据解析,而数据价值则体现在后续的趋势分析中。Temu 商品页面的价格数据主要有两种呈现形式:一是直接嵌入 HTML 的静态价格,二是通过 AJAX 请求从后端接口获取的动态价格。当数据库中积累了一定的历史价格数据后,可利用 pandas 进行数据清洗与分析,并用 matplotlib 绘制价格趋势图。

2025-12-22 16:36:28 2033

原创 拼多多数据抓取:Python 爬虫中的 JS 逆向基础案例分析

JS 逆向的本质,是通过分析前端 JavaScript 代码,还原其数据加密、参数生成的逻辑,再将该逻辑用 Python 或其他语言复现,从而构造出符合服务器要求的请求。(因拼多多真实加密逻辑会持续更新,且涉及平台合规性,此处采用简化的模拟逻辑),核心是演示 JS 逆向的流程。例如,当我们在拼多多搜索 “手机” 时,浏览器的网络请求中会出现一个获取商品列表的接口,其请求参数包含一串加密的。这段代码的逻辑是:将请求参数按名升序排序,拼接参数名和值,再拼接固定密钥,最后 MD5 加密得到。

2025-12-18 16:32:17 2452

原创 Python 爬虫如何分析并模拟 JS 动态请求

JS 动态请求的本质是浏览器通过 JavaScript 脚本,按照特定的规则(请求方法、参数、头信息、加密方式)向后端 API 接口发送请求,后端返回 JSON、XML 等结构化数据后,前端再进行渲染。从浏览器抓包定位请求,到分析参数与加密逻辑,再到用 Python 模拟请求,整个流程需要开发者具备调试 JS 代码、分析网络请求和编写爬虫的综合能力。若请求头中包含动态生成的 Token(如从 Cookie 或其他接口获取),需在爬虫中先请求 Token 接口,获取 Token 后再构造请求。

2025-12-17 16:37:43 1296

原创 从爬取到分析:使用 Pandas 处理头条问答数据

在当下的内容生态中,头条问答汇聚了海量用户生成的问答数据,这些数据涵盖了用户的兴趣偏好、问题诉求、内容互动等多维度信息,是洞察用户行为、挖掘内容价值的重要资源。本文将从头条问答数据的爬取入手,逐步讲解如何利用 Pandas 完成数据的清洗、转换与深度分析,让数据从原始的字符流转化为有价值的洞察。通过以上流程,原本杂乱的头条问答数据被转化为有价值的分析结论,无论是对于内容平台的运营优化,还是对于企业的用户洞察,都能提供有力的决策支持。,将带单位的数字字符串转换为浮点型数值,确保数值型字段的格式统一;

2025-12-16 16:35:29 949

原创 实时监控 1688 商品价格变化的爬虫系统实现

本文搭建的 1688 商品价格监控系统,通过 Python 实现了爬虫、数据存储、定时任务和告警的全流程功能。该系统可满足个人或小型团队的价格监控需求,通过简单的扩展(如增加多商品监控、可视化数据展示),还能适配更复杂的场景。同时,针对反爬机制和页面结构变化的问题,需要持续优化代码,确保系统的稳定性和可用性。当监控的商品数量增多时,SQLite 的性能可能不足,可将数据库迁移至 MySQL,并添加索引优化查询速度。因此,在代码中需要增加异常处理,并定期检查页面结构的变化,及时调整解析规则。

2025-12-15 16:39:11 2058

原创 反爬应对与增量抓取:Python 海量文档采集的稳定性保障

目标网站的反爬手段已从基础的 UA 检测、IP 封禁,升级为动态验证码、Cookie 验证、行为特征分析(如访问频率、点击轨迹)、JS 加密参数生成等。如何精准识别新增 / 更新文档、仅抓取变化数据,是降低采集成本、提升效率的核心问题。添加日志记录(如 logging 模块),监控抓取成功率、IP 存活状态、反爬触发频率,当异常指标超过阈值时,通过邮件 / 钉钉机器人发送告警。在代码中加入任务队列(如 Celery),将待抓取的文档 ID 存入队列,每次抓取前检查队列状态,故障恢复后可从断点继续执行。

2025-12-10 16:41:45 1876

原创 Python爬虫实战:抓取《疯狂动物城》相关社交媒体讨论

在信息爆炸的时代,社交媒体上的用户讨论蕴含着巨大的价值。本文将通过 Python 爬虫实战,详细讲解如何抓取微博平台上《疯狂动物城》的相关讨论数据,包括技术选型、核心逻辑实现、反爬规避及数据保存等关键环节,帮助读者掌握实用的爬虫开发技能。:数据分析与处理库,提供强大的数据结构(DataFrame),支持将抓取的数据快速导出为 CSV/Excel 等格式,方便后续分析。:HTML/XML 解析库,支持多种解析器,可通过 CSS 选择器或标签树结构快速提取目标数据,无需复杂的正则表达式。

2025-12-09 16:38:28 3153 2

原创 基于文本检测的 Python 爬虫弹窗图片定位与拖动实现

结合文本检测结果,将 OCR 识别到的目标文本(如 “拖动滑块”)与弹窗图片中的坐标关联,定位滑块起始位置与目标区域(通常为文本提示对应的缺口位置)。核心是生成非线性移动轨迹(加速 - 匀速 - 减速),通过 Selenium 的 ActionChains 类实现鼠标按下、移动、释放的连贯操作,同时控制移动时间与步长,模拟真实用户交互。不同网页的弹窗文本、元素 XPATH 差异较大,需通过 F12 开发者工具查看实际 DOM 结构,调整关键词(如 “拖动滑块”“缺口”)和 XPATH 路径。

2025-12-08 16:31:27 2166 1

原创 Python 多线程爬取社交媒体品牌反馈数据

本文基于 Python threading 模块实现了社交媒体品牌反馈数据的多线程爬取,通过线程安全队列、锁机制解决了多线程并发问题,结合反爬策略和数据清洗保证了爬取效率与数据质量。多线程爬虫通过创建多个线程并发发起请求,让 CPU 在等待某一线程响应的同时,处理其他线程的任务,从而最大化利用网络资源,提升爬取效率。需要注意的是,Python 的 GIL(全局解释器锁)限制了多线程的 CPU 并行,但爬虫属于 IO 密集型任务,GIL 对其影响极小,因此多线程仍是最优选择之一。

2025-12-04 16:40:30 1898

原创 京东评论数据抓取、存储与分析

在电商数据分析领域,商品评论作为用户反馈的核心载体,蕴含着消费偏好、产品缺陷、服务体验等关键信息。京东作为国内领先的电商平台,其评论数据的深度挖掘对商家优化产品策略、提升服务质量具有重要意义。本文将系统介绍京东评论数据的抓取、存储与分析全流程,并提供可落地的技术实现方案。京东评论数据采用动态加载机制,需通过分析接口参数实现批量获取。我们以 Python 作为开发语言,结合 Requests 库与 JSON 解析技术完成数据抓取。抓取的评论数据需进行结构化存储,以便后续分析。一、京东评论数据抓取技术实现。

2025-12-03 16:45:34 413

原创 基于Splash的搜狗图片动态页面渲染爬取实战指南

在当今的互联网环境中,越来越多的网站采用JavaScript动态渲染技术来展示内容,传统的静态爬虫工具对此类页面束手无策。搜狗图片搜索正是这样一个典型应用,其瀑布流式的图片加载、动态滚动的页面设计以及复杂的AJAX请求,使得常规的Requests+BeautifulSoup组合难以有效抓取数据。针对这一问题,本文将详细介绍如何使用Splash这一强大的JavaScript渲染服务,结合Scrapy框架,实现对搜狗图片动态页面的高效爬取。本文详细介绍了基于Splash的搜狗图片动态页面爬取方案。

2025-12-02 16:41:48 1139

原创 高效爬取某易云音乐:Python JS 逆向与多线程结合实践

技术难点主要集中在两个方面:一是某易云音乐接口参数的 JS 加密机制,核心参数如。本文通过 JS 逆向破解某易云音乐加密机制,并结合多线程技术实现高效爬取,成功获取歌曲评论数据。采用生产者 - 消费者模式:主线程解析评论分页参数,生产者线程生成请求任务,消费者线程执行爬取并存储数据,使用。是对随机生成的 16 位密钥进行 RSA 加密后的结果,公钥固定。,请求方式为 POST,参数包含。

2025-12-01 16:38:14 900

原创 Python爬虫伪装策略:如何模拟浏览器正常访问JSP站点

部分JSP站点也会使用JavaScript进行简单的计算或跳转,虽然复杂度不及React/Vue应用,但足以拦截基础的。通过上述策略和代码,我们已经能够成功模拟一个正常浏览器对JSP站点的访问。我们的目标是将一个赤裸的HTTP请求,包装成一个由真实浏览器发出的、可信的请求。当简单的请求头伪装无效时,可能是遇到了JavaScript挑战。这是伪装的第一步,也是最关键的一步。它会自动处理Cookie,在多次请求间保持会话状态,就像浏览器一样。:当上述所有特征都指向爬虫时,服务器最终会记录并封禁您的IP地址。

2025-11-27 16:35:58 848

原创 构建混合爬虫:何时使用Requests,何时切换至Selenium处理请求头?

让Selenium去完成那些需要浏览器环境才能完成的“脏活累活”(如登录、获取Cookie、触发JS),然后将其获得的。:在同一任务上,混合爬虫的速度通常比纯Selenium方案快5-10倍甚至更多,因为避免了所有浏览器的渲染开销。函数中,加入重试机制。:能完美渲染JavaScript,模拟所有用户交互行为(点击、输入、滚动等)。,能处理复杂地形(JS交互),为特种部队扫清障碍(获取认证信息)。:速度极快,资源消耗低,是处理大规模数据采集的首选。,交给高效的Requests去进行大规模的数据请求。

2025-11-26 16:42:52 443

原创 应对12306反爬虫机制:JS加密参数逆向分析

首先在浏览器中打开12306车票查询页面,开启Network监控,执行一次查询。破解12306的JS加密参数,是一场在技术边界上的精确舞蹈。它既需要扎实的JavaScript语言基础,又需要对加密算法的深刻理解,更需要耐心细致的调试分析能力。当您在网页上点击"查询"时,浏览器会执行复杂的JS代码,生成一个或多个经过加密的签名参数。我们会发现关键代码通常隐藏在压缩的JS文件中。通过本文的深度剖析,我们不仅掌握了一套具体的技术方案,更重要的是建立了一种。这个参数,它就是我们需要破解的加密参数之一。

2025-11-24 16:39:05 1570

原创 构建稳定爬虫:为番茄小说爬虫添加IP代理与请求头伪装

我们的番茄小说爬虫成功地从一只容易被拍死的“苍蝇”,进化成了一个拥有无数伪装身份的“特工”。这不仅是技术的叠加,更是一种工程思维的体现:将爬虫系统视为一个需要持续对抗、适应和演化的有机体。提供高匿、稳定的HTTP/HTTPS/SOCKS5代理,通常通过API接口获取IP列表,是商业项目的首选。即使请求头伪装得再好,来自单一IP的高频请求依然会暴露。使用IP代理池,让请求来自全球各地的不同机器,是突破IP封锁的根本手段。:记录每个请求使用的代理、耗时、状态码,便于分析代理质量和网站反爬策略的变化。

2025-11-20 16:39:47 1723

原创 异步与并发:利用Java多线程技术提升淘宝商品爬取效率

线程池,我们成功地将一个缓慢的单线程淘宝商品爬虫,改造为一个高效、强大的并发数据抓取引擎。:通过多线程技术,在一个线程等待I/O时,CPU可以立即切换到另一个线程去发起新的请求或处理已返回的数据。:Java 8引入的异步编程利器,它能够方便地组合多个异步操作,处理它们的结果或异常,实现非阻塞的回调。通过异步与并发编程,我们可以将原本线性增长的总耗时,降低几个数量级,实现近乎与线程数成正比的抓取速度。:可以实现更复杂的异步流水线,例如:抓取完成后,立即异步地进行数据清洗和存储,进一步提升整体吞吐量。

2025-11-19 16:41:19 787

原创 定时抓取与更新:用Python爬虫构建自己的新闻简报系统

通过这个项目,我们不仅构建了一个实用的自动化工具,更串联起了现代软件开发中的多个核心环节:数据采集、数据处理、任务调度和系统集成。这个系统是一个强大的基石,你可以基于它无限扩展,打造一个真正懂你的、专属的智能信息中枢。:强大的HTML/XML解析库,能从杂乱的网页中精准提取我们需要的数据。:将新增的新闻内容整理成优雅的HTML格式,并通过电子邮件发送给用户。在开始编码之前,我们先勾勒出系统的核心组成部分,这就像建筑师的蓝图。:用于持久化存储爬取到的新闻数据,避免重复,并支持历史查询。

2025-11-18 16:38:03 935

原创 Scrapy框架在小米应用市场爬虫项目中的实战应用 (1)

作为Python生态下最著名的专业爬虫框架,以其高内聚、低耦合的“五大件”架构(Spider、Item、Pipeline、Downloader、Scheduler)而闻名。它不仅能高效地处理请求和解析数据,还内置了中间件机制,让我们能够优雅地应对各种复杂的反爬场景。从项目初始化、数据建模、核心爬虫编写,到通过中间件应对反爬虫策略,再到数据持久化,Scrapy提供了一套完整、规范且可扩展的解决方案。我们的目标是爬取小米应用市场中,针对特定关键词(如“游戏”)的搜索结果。: 我们生成的初始爬虫文件。

2025-11-17 16:46:29 1407

原创 爬虫监控与报警:Python实现前程无忧爬虫运行状态监控

通过本文介绍的Python技术方案,你可以以较低的成本,为你的“前程无忧”爬虫乃至任何Scrapy爬虫项目,赋予强大的状态感知能力和快速的问题响应能力,从而确保数据生产的稳定与高效。我们的监控系统将围绕这些维度,通过日志分析、心跳检测和指标上报等方式,并在异常发生时通过多种渠道(如邮件、钉钉、微信)发出警报。中配置日志,确保能记录不同级别(INFO, WARNING, ERROR)的信息,并输出到文件。我们首先创建一个基础的Scrapy项目,用于爬取前程无忧的Python职位列表。数量是否在合理范围内?

2025-11-14 16:13:02 2307

原创 突破反爬:使用代理IP和User-Agent轮询爬取音乐数据

通过代理IP轮询和User-Agent管理的结合使用,我们可以有效应对大多数基础和中级的反爬措施。:网站会监控单个IP地址的请求频率,如果短时间内请求过多,会判定为该IP存在爬虫行为,从而实施封禁。:通过检查HTTP请求头中的User-Agent字段,识别并拦截非常规浏览器或爬虫工具的请求。:高级反爬系统会分析用户的点击模式、鼠标移动轨迹等行为特征,区分人类用户和自动化程序。下面我们通过一个具体的示例,演示如何实现一个具备反反爬能力的音乐数据爬虫。轮换User-Agent,模拟不同浏览器和设备的访问。

2025-11-13 16:42:59 1455

原创 在Scrapy中如何处理API分页及增量爬取

通过结合Scrapy的请求调度能力和一个外部的持久化去重机制,我们可以高效、稳健地实现API的分页爬取与增量抓取。实现增量爬取的关键在于识别数据的“唯一性”和“变化性”,通常通过记录已爬取条目的ID、更新时间戳或哈希值来实现。排列,当我们遇到一个重复的ID时,意味着这一页及之后的所有文章都是我们已经爬取过的。如果不能系统地处理分页,我们的爬虫将只能获取到第一页的数据,导致数据严重不完整。我们的目标是:爬取所有分页的文章,并且每次运行时只抓取新发布的文章。这比基于ID的去重更精确,能捕捉到文章的更新。

2025-11-12 16:41:17 1093

原创 从Bing图片搜索JSON API直接获取数据

本文介绍了通过Bing图片搜索JSON API高效获取数据的方法。相比传统爬取HTML的方式,JSON API具有带宽消耗低、数据结构化、接口稳定等优势。文章详细讲解了使用浏览器开发者工具发现API端点的步骤,并逆向分析了关键参数如搜索关键词(q)、分页参数(first/count)等。该API基础URL为https://www.bing.com/images/async,采用偏移量(first)实现分页,每页默认返回35张图片数据。这种方案显著提升了数据采集的效率和稳定性。

2025-11-11 16:40:20 1135

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除