- 博客(576)
- 收藏
- 关注
原创 Python实现办公自动化的数据可视化与报表生成
幸运的是,Python提供了强大的工具和库,可以帮助我们实现办公自动化,从而提高工作效率和准确性。通过使用Python进行数据可视化和报表生成,我们可以实现办公自动化,提高工作效率和准确性。Matplotlib和Seaborn可以帮助我们深入展示数据特征和趋势,Pandas和Openpyxl可以帮助我们处理和生成表格的报表。在Python中实现办公自动化的数据可视化与报表生成时,我们可以使用一些常见的库和工具通过代理IP进行网页访问获取数据,可以使用requests库结合代理信息进行配置。
2023-07-19 16:07:59
40176
4
原创 拼多多数据抓取:Python 爬虫中的 JS 逆向基础案例分析
JS 逆向的本质,是通过分析前端 JavaScript 代码,还原其数据加密、参数生成的逻辑,再将该逻辑用 Python 或其他语言复现,从而构造出符合服务器要求的请求。(因拼多多真实加密逻辑会持续更新,且涉及平台合规性,此处采用简化的模拟逻辑),核心是演示 JS 逆向的流程。例如,当我们在拼多多搜索 “手机” 时,浏览器的网络请求中会出现一个获取商品列表的接口,其请求参数包含一串加密的。这段代码的逻辑是:将请求参数按名升序排序,拼接参数名和值,再拼接固定密钥,最后 MD5 加密得到。
2025-12-18 16:32:17
1038
原创 Python 爬虫如何分析并模拟 JS 动态请求
JS 动态请求的本质是浏览器通过 JavaScript 脚本,按照特定的规则(请求方法、参数、头信息、加密方式)向后端 API 接口发送请求,后端返回 JSON、XML 等结构化数据后,前端再进行渲染。从浏览器抓包定位请求,到分析参数与加密逻辑,再到用 Python 模拟请求,整个流程需要开发者具备调试 JS 代码、分析网络请求和编写爬虫的综合能力。若请求头中包含动态生成的 Token(如从 Cookie 或其他接口获取),需在爬虫中先请求 Token 接口,获取 Token 后再构造请求。
2025-12-17 16:37:43
650
原创 从爬取到分析:使用 Pandas 处理头条问答数据
在当下的内容生态中,头条问答汇聚了海量用户生成的问答数据,这些数据涵盖了用户的兴趣偏好、问题诉求、内容互动等多维度信息,是洞察用户行为、挖掘内容价值的重要资源。本文将从头条问答数据的爬取入手,逐步讲解如何利用 Pandas 完成数据的清洗、转换与深度分析,让数据从原始的字符流转化为有价值的洞察。通过以上流程,原本杂乱的头条问答数据被转化为有价值的分析结论,无论是对于内容平台的运营优化,还是对于企业的用户洞察,都能提供有力的决策支持。,将带单位的数字字符串转换为浮点型数值,确保数值型字段的格式统一;
2025-12-16 16:35:29
917
原创 实时监控 1688 商品价格变化的爬虫系统实现
本文搭建的 1688 商品价格监控系统,通过 Python 实现了爬虫、数据存储、定时任务和告警的全流程功能。该系统可满足个人或小型团队的价格监控需求,通过简单的扩展(如增加多商品监控、可视化数据展示),还能适配更复杂的场景。同时,针对反爬机制和页面结构变化的问题,需要持续优化代码,确保系统的稳定性和可用性。当监控的商品数量增多时,SQLite 的性能可能不足,可将数据库迁移至 MySQL,并添加索引优化查询速度。因此,在代码中需要增加异常处理,并定期检查页面结构的变化,及时调整解析规则。
2025-12-15 16:39:11
1305
原创 反爬应对与增量抓取:Python 海量文档采集的稳定性保障
目标网站的反爬手段已从基础的 UA 检测、IP 封禁,升级为动态验证码、Cookie 验证、行为特征分析(如访问频率、点击轨迹)、JS 加密参数生成等。如何精准识别新增 / 更新文档、仅抓取变化数据,是降低采集成本、提升效率的核心问题。添加日志记录(如 logging 模块),监控抓取成功率、IP 存活状态、反爬触发频率,当异常指标超过阈值时,通过邮件 / 钉钉机器人发送告警。在代码中加入任务队列(如 Celery),将待抓取的文档 ID 存入队列,每次抓取前检查队列状态,故障恢复后可从断点继续执行。
2025-12-10 16:41:45
1364
原创 Python爬虫实战:抓取《疯狂动物城》相关社交媒体讨论
在信息爆炸的时代,社交媒体上的用户讨论蕴含着巨大的价值。本文将通过 Python 爬虫实战,详细讲解如何抓取微博平台上《疯狂动物城》的相关讨论数据,包括技术选型、核心逻辑实现、反爬规避及数据保存等关键环节,帮助读者掌握实用的爬虫开发技能。:数据分析与处理库,提供强大的数据结构(DataFrame),支持将抓取的数据快速导出为 CSV/Excel 等格式,方便后续分析。:HTML/XML 解析库,支持多种解析器,可通过 CSS 选择器或标签树结构快速提取目标数据,无需复杂的正则表达式。
2025-12-09 16:38:28
2258
2
原创 基于文本检测的 Python 爬虫弹窗图片定位与拖动实现
结合文本检测结果,将 OCR 识别到的目标文本(如 “拖动滑块”)与弹窗图片中的坐标关联,定位滑块起始位置与目标区域(通常为文本提示对应的缺口位置)。核心是生成非线性移动轨迹(加速 - 匀速 - 减速),通过 Selenium 的 ActionChains 类实现鼠标按下、移动、释放的连贯操作,同时控制移动时间与步长,模拟真实用户交互。不同网页的弹窗文本、元素 XPATH 差异较大,需通过 F12 开发者工具查看实际 DOM 结构,调整关键词(如 “拖动滑块”“缺口”)和 XPATH 路径。
2025-12-08 16:31:27
1364
1
原创 Python 多线程爬取社交媒体品牌反馈数据
本文基于 Python threading 模块实现了社交媒体品牌反馈数据的多线程爬取,通过线程安全队列、锁机制解决了多线程并发问题,结合反爬策略和数据清洗保证了爬取效率与数据质量。多线程爬虫通过创建多个线程并发发起请求,让 CPU 在等待某一线程响应的同时,处理其他线程的任务,从而最大化利用网络资源,提升爬取效率。需要注意的是,Python 的 GIL(全局解释器锁)限制了多线程的 CPU 并行,但爬虫属于 IO 密集型任务,GIL 对其影响极小,因此多线程仍是最优选择之一。
2025-12-04 16:40:30
1565
原创 京东评论数据抓取、存储与分析
在电商数据分析领域,商品评论作为用户反馈的核心载体,蕴含着消费偏好、产品缺陷、服务体验等关键信息。京东作为国内领先的电商平台,其评论数据的深度挖掘对商家优化产品策略、提升服务质量具有重要意义。本文将系统介绍京东评论数据的抓取、存储与分析全流程,并提供可落地的技术实现方案。京东评论数据采用动态加载机制,需通过分析接口参数实现批量获取。我们以 Python 作为开发语言,结合 Requests 库与 JSON 解析技术完成数据抓取。抓取的评论数据需进行结构化存储,以便后续分析。一、京东评论数据抓取技术实现。
2025-12-03 16:45:34
399
原创 基于Splash的搜狗图片动态页面渲染爬取实战指南
在当今的互联网环境中,越来越多的网站采用JavaScript动态渲染技术来展示内容,传统的静态爬虫工具对此类页面束手无策。搜狗图片搜索正是这样一个典型应用,其瀑布流式的图片加载、动态滚动的页面设计以及复杂的AJAX请求,使得常规的Requests+BeautifulSoup组合难以有效抓取数据。针对这一问题,本文将详细介绍如何使用Splash这一强大的JavaScript渲染服务,结合Scrapy框架,实现对搜狗图片动态页面的高效爬取。本文详细介绍了基于Splash的搜狗图片动态页面爬取方案。
2025-12-02 16:41:48
852
原创 高效爬取某易云音乐:Python JS 逆向与多线程结合实践
技术难点主要集中在两个方面:一是某易云音乐接口参数的 JS 加密机制,核心参数如。本文通过 JS 逆向破解某易云音乐加密机制,并结合多线程技术实现高效爬取,成功获取歌曲评论数据。采用生产者 - 消费者模式:主线程解析评论分页参数,生产者线程生成请求任务,消费者线程执行爬取并存储数据,使用。是对随机生成的 16 位密钥进行 RSA 加密后的结果,公钥固定。,请求方式为 POST,参数包含。
2025-12-01 16:38:14
623
原创 Python爬虫伪装策略:如何模拟浏览器正常访问JSP站点
部分JSP站点也会使用JavaScript进行简单的计算或跳转,虽然复杂度不及React/Vue应用,但足以拦截基础的。通过上述策略和代码,我们已经能够成功模拟一个正常浏览器对JSP站点的访问。我们的目标是将一个赤裸的HTTP请求,包装成一个由真实浏览器发出的、可信的请求。当简单的请求头伪装无效时,可能是遇到了JavaScript挑战。这是伪装的第一步,也是最关键的一步。它会自动处理Cookie,在多次请求间保持会话状态,就像浏览器一样。:当上述所有特征都指向爬虫时,服务器最终会记录并封禁您的IP地址。
2025-11-27 16:35:58
672
原创 构建混合爬虫:何时使用Requests,何时切换至Selenium处理请求头?
让Selenium去完成那些需要浏览器环境才能完成的“脏活累活”(如登录、获取Cookie、触发JS),然后将其获得的。:在同一任务上,混合爬虫的速度通常比纯Selenium方案快5-10倍甚至更多,因为避免了所有浏览器的渲染开销。函数中,加入重试机制。:能完美渲染JavaScript,模拟所有用户交互行为(点击、输入、滚动等)。,能处理复杂地形(JS交互),为特种部队扫清障碍(获取认证信息)。:速度极快,资源消耗低,是处理大规模数据采集的首选。,交给高效的Requests去进行大规模的数据请求。
2025-11-26 16:42:52
425
原创 应对12306反爬虫机制:JS加密参数逆向分析
首先在浏览器中打开12306车票查询页面,开启Network监控,执行一次查询。破解12306的JS加密参数,是一场在技术边界上的精确舞蹈。它既需要扎实的JavaScript语言基础,又需要对加密算法的深刻理解,更需要耐心细致的调试分析能力。当您在网页上点击"查询"时,浏览器会执行复杂的JS代码,生成一个或多个经过加密的签名参数。我们会发现关键代码通常隐藏在压缩的JS文件中。通过本文的深度剖析,我们不仅掌握了一套具体的技术方案,更重要的是建立了一种。这个参数,它就是我们需要破解的加密参数之一。
2025-11-24 16:39:05
1442
原创 构建稳定爬虫:为番茄小说爬虫添加IP代理与请求头伪装
我们的番茄小说爬虫成功地从一只容易被拍死的“苍蝇”,进化成了一个拥有无数伪装身份的“特工”。这不仅是技术的叠加,更是一种工程思维的体现:将爬虫系统视为一个需要持续对抗、适应和演化的有机体。提供高匿、稳定的HTTP/HTTPS/SOCKS5代理,通常通过API接口获取IP列表,是商业项目的首选。即使请求头伪装得再好,来自单一IP的高频请求依然会暴露。使用IP代理池,让请求来自全球各地的不同机器,是突破IP封锁的根本手段。:记录每个请求使用的代理、耗时、状态码,便于分析代理质量和网站反爬策略的变化。
2025-11-20 16:39:47
1674
原创 异步与并发:利用Java多线程技术提升淘宝商品爬取效率
线程池,我们成功地将一个缓慢的单线程淘宝商品爬虫,改造为一个高效、强大的并发数据抓取引擎。:通过多线程技术,在一个线程等待I/O时,CPU可以立即切换到另一个线程去发起新的请求或处理已返回的数据。:Java 8引入的异步编程利器,它能够方便地组合多个异步操作,处理它们的结果或异常,实现非阻塞的回调。通过异步与并发编程,我们可以将原本线性增长的总耗时,降低几个数量级,实现近乎与线程数成正比的抓取速度。:可以实现更复杂的异步流水线,例如:抓取完成后,立即异步地进行数据清洗和存储,进一步提升整体吞吐量。
2025-11-19 16:41:19
776
原创 定时抓取与更新:用Python爬虫构建自己的新闻简报系统
通过这个项目,我们不仅构建了一个实用的自动化工具,更串联起了现代软件开发中的多个核心环节:数据采集、数据处理、任务调度和系统集成。这个系统是一个强大的基石,你可以基于它无限扩展,打造一个真正懂你的、专属的智能信息中枢。:强大的HTML/XML解析库,能从杂乱的网页中精准提取我们需要的数据。:将新增的新闻内容整理成优雅的HTML格式,并通过电子邮件发送给用户。在开始编码之前,我们先勾勒出系统的核心组成部分,这就像建筑师的蓝图。:用于持久化存储爬取到的新闻数据,避免重复,并支持历史查询。
2025-11-18 16:38:03
905
原创 Scrapy框架在小米应用市场爬虫项目中的实战应用 (1)
作为Python生态下最著名的专业爬虫框架,以其高内聚、低耦合的“五大件”架构(Spider、Item、Pipeline、Downloader、Scheduler)而闻名。它不仅能高效地处理请求和解析数据,还内置了中间件机制,让我们能够优雅地应对各种复杂的反爬场景。从项目初始化、数据建模、核心爬虫编写,到通过中间件应对反爬虫策略,再到数据持久化,Scrapy提供了一套完整、规范且可扩展的解决方案。我们的目标是爬取小米应用市场中,针对特定关键词(如“游戏”)的搜索结果。: 我们生成的初始爬虫文件。
2025-11-17 16:46:29
1391
原创 爬虫监控与报警:Python实现前程无忧爬虫运行状态监控
通过本文介绍的Python技术方案,你可以以较低的成本,为你的“前程无忧”爬虫乃至任何Scrapy爬虫项目,赋予强大的状态感知能力和快速的问题响应能力,从而确保数据生产的稳定与高效。我们的监控系统将围绕这些维度,通过日志分析、心跳检测和指标上报等方式,并在异常发生时通过多种渠道(如邮件、钉钉、微信)发出警报。中配置日志,确保能记录不同级别(INFO, WARNING, ERROR)的信息,并输出到文件。我们首先创建一个基础的Scrapy项目,用于爬取前程无忧的Python职位列表。数量是否在合理范围内?
2025-11-14 16:13:02
2284
原创 突破反爬:使用代理IP和User-Agent轮询爬取音乐数据
通过代理IP轮询和User-Agent管理的结合使用,我们可以有效应对大多数基础和中级的反爬措施。:网站会监控单个IP地址的请求频率,如果短时间内请求过多,会判定为该IP存在爬虫行为,从而实施封禁。:通过检查HTTP请求头中的User-Agent字段,识别并拦截非常规浏览器或爬虫工具的请求。:高级反爬系统会分析用户的点击模式、鼠标移动轨迹等行为特征,区分人类用户和自动化程序。下面我们通过一个具体的示例,演示如何实现一个具备反反爬能力的音乐数据爬虫。轮换User-Agent,模拟不同浏览器和设备的访问。
2025-11-13 16:42:59
1444
原创 在Scrapy中如何处理API分页及增量爬取
通过结合Scrapy的请求调度能力和一个外部的持久化去重机制,我们可以高效、稳健地实现API的分页爬取与增量抓取。实现增量爬取的关键在于识别数据的“唯一性”和“变化性”,通常通过记录已爬取条目的ID、更新时间戳或哈希值来实现。排列,当我们遇到一个重复的ID时,意味着这一页及之后的所有文章都是我们已经爬取过的。如果不能系统地处理分页,我们的爬虫将只能获取到第一页的数据,导致数据严重不完整。我们的目标是:爬取所有分页的文章,并且每次运行时只抓取新发布的文章。这比基于ID的去重更精确,能捕捉到文章的更新。
2025-11-12 16:41:17
1074
原创 从Bing图片搜索JSON API直接获取数据
本文介绍了通过Bing图片搜索JSON API高效获取数据的方法。相比传统爬取HTML的方式,JSON API具有带宽消耗低、数据结构化、接口稳定等优势。文章详细讲解了使用浏览器开发者工具发现API端点的步骤,并逆向分析了关键参数如搜索关键词(q)、分页参数(first/count)等。该API基础URL为https://www.bing.com/images/async,采用偏移量(first)实现分页,每页默认返回35张图片数据。这种方案显著提升了数据采集的效率和稳定性。
2025-11-11 16:40:20
1113
原创 时序数据分析:Python爬取新浪财经频道新闻并绘制趋势图
在信息爆炸的时代,财经新闻不仅是市场动态的反映,其本身也是一种极具价值的时间序列数据。通过对海量财经新闻进行爬取、分析和可视化,我们可以从宏观视角洞察市场情绪的波动、热点议题的变迁以及潜在的投资风向。传统的定性阅读难以捕捉这种宏观趋势,而结合Python强大的爬虫与数据分析能力,我们便能将文本信息转化为直观的“数据脉搏图”。+情感词典),计算出每日新闻的平均情感倾向,从而绘制出“市场情绪指数”曲线,其价值将远超单纯的数量分析。爬取到的原始数据中的时间是字符串格式,我们需要将其转换为Pandas的。
2025-11-10 16:28:49
750
原创 增量爬取策略:如何持续监控贝壳网最新成交数据
本文介绍了增量爬取贝壳网成交数据的方法。相比全量爬取,增量爬取只获取新增或变化的数据,具有效率高、减轻网站压力、实现近实时监控和降低存储成本等优势。策略上建议基于列表页的发布时序识别新数据,通过记录最新成交日期作为基准点实现增量爬取。技术实现使用requests发送请求,BeautifulSoup解析HTML,SQLite存储数据和管理状态。核心代码包括数据库初始化、爬虫主循环和详情页解析等功能模块,可有效获取和处理新增成交记录。
2025-11-06 16:37:54
1395
原创 完整工具链:从爬取、解析到可视化12306城市数据的全流程实现
本文介绍了一种从12306网站获取城市站点数据的完整技术方案。通过构建分层技术架构,使用Requests模块获取数据,结合正则表达式解析JSON格式的车站信息,最终存储到SQLite数据库并利用PyEcharts进行可视化展示。方案包含代理设置、数据清洗等关键步骤,可有效获取包含车站名称、代码、拼音等信息的城市数据,为交通网络分析和商业决策提供数据支持。
2025-11-05 16:39:43
324
原创 构建1688店铺商品数据集:Python爬虫数据采集与格式化实践
本文介绍了从1688店铺主页采集商品数据的实现方案。通过Python技术栈(requests+parsel+pandas)分三步完成:1)模拟浏览器请求获取HTML源码,使用代理IP和随机User-Agent应对反爬;2)解析商品列表页和详情页,提取标题、价格、销量等结构化信息;3)数据清洗后存储为CSV/JSON文件。文中提供了核心代码示例,包括请求头设置、代理配置和页面解析逻辑,适用于静态页面采集。需要注意的是1688页面结构可能频繁变动,动态渲染页面需结合selenium等工具处理。
2025-11-04 16:41:20
2493
原创 集成Scrapy与异步库:Scrapy+Playwright自动化爬取动态内容
我们无需放弃Scrapy的任何核心优势,如灵活的中间件、Item Pipeline、数据导出、请求调度等,仅仅是增强了其下载页面的能力。:不仅仅是等待加载,Playwright可以模拟所有用户行为:点击、填写表单、滚动、悬停等,从而触发那些需要用户交互才会显示的数据。这套方案能够应对当今Web开发中绝大多数复杂的动态内容加载场景,从简单的Ajax请求到复杂的单页应用,都不在话下。对于更复杂的场景,例如需要登录、处理弹窗或管理多个独立会话,我们可以使用Playwright上下文。
2025-11-03 16:45:50
535
原创 从携程爬取的杭州酒店数据中提取价格、评分与评论的关键信息
通过本文介绍的技术流程,我们成功地将非结构化的网页HTML,转化为了包含价格、评分和评论摘要的结构化数据。:与价格类似,评论详情也是通过单独的API接口异步加载的,返回标准的JSON格式,其中包含了用户昵称、评论内容、评分、入住时间、有用数等字段。掌握了这项数据提炼技术,您就拥有了将互联网上海量、杂乱的公开信息,转化为高质量、可操作商业洞察的金钥匙。:如总评分、分项评分(位置、卫生、服务、设施)、评论总数等,常以嵌套的JSON对象形式存在于页面的。:正则表达式库,用于精准匹配和提取文本中的JSON块。
2025-10-31 15:55:38
518
原创 利用Selenium和PhantomJS提升网页内容抓取与分析的效率
提升效率的关键在于,将其从“模拟视觉化用户”转变为“高性能的无头数据采集工具”。当面对纯JS渲染、且没有清晰API的网站时,Selenium配合无头浏览器才是你的终极武器。:可以模拟真实浏览器的行为,如滚动、点击、输入等,使得爬虫行为更接近人类,从而绕过一些基于用户行为检测的反爬机制。:Chrome和Firefox都推出了原生的无头模式,性能更优,兼容性更好,是当前的主流选择。:虽然Selenium功能强大,但它始终是资源密集型工具。:PhantomJS是早期无头浏览器的代表,不需要图形界面,节省了资源。
2025-10-30 16:31:42
675
原创 数据获取与分析全流程:Python爬取并可视化贝壳成交趋势
通过浏览器开发者工具(F12),我们可以在“网络”(Network)选项卡下,筛选XHR/Fetch请求,当浏览贝壳的成交页面时,会发现一个包含“deal”字样的API请求。:我们将通过Python模拟浏览器请求,直接调用贝壳的隐藏API接口来获取结构化的JSON数据。:API返回的数据并非完美无缺,我们需要进行清洗,处理缺失值、格式化字段(如价格、日期),并将最终结果持久化保存到CSV文件中,便于后续分析。爬取到的原始数据往往是杂乱无章的,我们需要将其“驯服”。现在,是时候让数据“开口说话”了。
2025-10-29 16:40:33
861
原创 Python爬虫定时任务:自动化抓取豆瓣每日最新短评
本文详细介绍了构建一个完整的豆瓣短评定时爬虫系统的全过程。通过合理的架构设计和代码实现,我们创建了一个稳定、可扩展的自动化数据采集系统。这个系统不仅能够定时抓取最新的短评数据,还具备了完善的反爬应对机制和数据管理功能。在开始编码前,我们需要规划完整的解决方案架构。:应对IP封禁(本文未实现,生产环境建议添加):负责发送HTTP请求并获取页面内容。:从HTML中提取结构化短评数据。详细的日志记录,便于问题排查。User-Agent轮换。:将抓取结果持久化保存。:用于发送HTTP请求。四、技术要点与最佳实践。
2025-10-28 16:35:43
707
原创 从快手评论数据中挖掘舆情:Python爬虫与文本分析实战
通过浏览器的“开发者工具”(F12),切换到“网络”(Network)选项卡,然后刷新快手视频页面并向下滑动加载评论,可以捕获到多个网络请求。这个请求的URL通常是类似的模式。例如,如果视频是关于一款新手机,高频词可能会出现“屏幕”、“价格”、“续航”、“流畅”等,从而知道用户最关心什么。库,它是一个专门为中文文本处理而开发的库,其情感分析功能基于朴素贝叶斯模型训练,对商品评论、社交媒体文本有较好的效果。:通过情感分布饼图,我们可以一目了然地看到对该视频的舆论是“褒”大于“贬”,还是争议较大(中性居多)。
2025-10-27 16:38:58
855
原创 Java爬虫性能优化:以喜马拉雅音频元数据抓取为例
我们的目标是抓取喜马拉雅某个特定分类或播主下的音频列表及其元数据。一个最基础的爬虫通常会使用同步阻塞的方式,逐个请求页面或接口,这在效率上是无法接受的。HttpClient内置的连接池可以复用连接,极大提升性能。当程序重启时,可以从断点处继续,避免重复劳动。(来自Guava库)或信号量来控制请求速率,避免对目标服务器造成压力。我们将从连接管理、异步非IO、线程池、请求调度等方面系统性优化。:构建一个代理IP池,在请求时随机选择,避免IP被封。管理线程池,将抓取任务提交给线程池并行执行。等多个层面进行考量。
2025-10-23 16:35:52
825
原创 双管齐下:结合显式等待与Timeout处理复杂Ajax网页
它不会强制程序休眠一个固定的时间,而是不断地检查某个条件是否成立(例如,某个HTML元素是否在DOM中出现),直到条件成立或超过了设定的最大等待时间。下面,我们通过一个具体的例子,演示如何使用Selenium WebDriver结合显式等待与Timeout来抓取一个模拟的、包含延迟加载评论的网页。Timeout确保了我们的爬虫不会因为一个永不加载的元素或一个无限循环的脚本而无限期地卡住,从而提升了程序的健壮性和资源管理能力。作为被动的、全局的防御手段,为所有可能出错的操作划定底线,防止程序失控。
2025-10-22 16:37:08
1049
原创 Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
如果生成的代码某部分不满足要求,可以单独就这部分对 AI 提问,例如“请优化上面的错误处理部分,记录失败URL到文件”。高质量的 Prompt,本质上是为 AI 扮演了一个“产品经理 + 架构师”的角色,清晰、详尽地定义了需求、约束和边界。如果 AI 一开始不理解复杂需求,先从简单的 Prompt 开始,再基于其输出进行迭代和细化。避免使用“更好”、“更快”等模糊词汇,而是使用“限制并发数为5”、“最多重试3次”等具体指令。这个 Prompt 已经好了很多,AI 会生成结构更清晰的代码,可能包含。
2025-10-21 16:42:07
594
原创 实战:Python爬虫如何模拟登录与维持会话状态
是服务器为每个用户创建的一个存储空间,用于保存用户的状态信息(如登录状态、购物车内容等)。CSRF Token是一个随机的、难以猜测的字符串,由服务器在登录表单中生成,提交登录请求时必须原样带回,用于证明请求来源于真实的网站表单。:服务器接收到请求后,通过解析Cookie中的Session ID,就能找到对应的Session,从而识别出当前请求的用户身份。模拟登录请求以获取有效的Cookie,并在后续的请求中持续地、正确地携带这个Cookie。它会自动管理和维护Cookie,就像一个小型的浏览器。
2025-10-20 16:39:57
1439
原创 爬虫工程化:使用中间件在Scrapy中统一处理403状态码
的数据采集系统的关键一步。本文提供的方案不仅解决了403问题,更展示了一种工程化的思维模式,可举一反三应用于处理其他如429(请求过多)、JS挑战等复杂的爬虫挑战。创建一个自定义中间件,捕获所有状态码为403的响应,并按照预设策略自动重试该请求,同时在重试前对请求进行“修饰”以绕过检测。:项目中所有Spider发出的请求,一旦遇到403,都会自动触发重试机制,无需在每个Spider中重复编写错误处理代码。仅仅创建中间件是不够的,我们需要在Scrapy项目的设置文件中启用它,并调整相关配置。
2025-10-16 16:33:14
1239
原创 Python爬虫数据可视化:深度分析贝壳成交价格趋势与分布
中位数相较于均值,能更好地避免极端值的影响,反映价格的“典型”水平。通过“Python爬虫 + 数据可视化”这一技术组合,我们成功地将贝壳平台上零散的成交数据转化为了具有强大解释力的视觉洞察。从宏观的趋势判断,到微观的分布与关联分析,每一步都让我们对房地产市场有了更深刻、更量化的理解。在实际操作中,你可能需要先爬取列表页获取每个房源的ID,再构造详情页URL或找到背后的Ajax接口。由于贝壳的成交数据并未提供公开的API,我们需要通过Python爬虫来模拟浏览器行为,从网页中提取结构化信息。
2025-10-15 16:49:56
1033
原创 Python爬虫常见陷阱:Ajax动态生成内容的URL去重与数据拼接
在传统静态爬虫中,URL通常是明确且稳定的,基于集合(Set)或布隆过滤器(Bloom Filter)的去重机制工作得非常好。应该将数据存储在有结构的形式中(如JSON文件、数据库),并利用数据本身的关联键(如唯一ID、时间戳)进行排序和整合。忽略掉那些不影响数据内容的参数(如时间戳、随机token),只关心决定数据分页、排序或分类的关键参数。:为每条爬取的数据记录附加爬取时的信息(如爬取时间、来源页面),便于后续的数据追踪和问题排查。:为防止缓存,服务器可能要求URL中包含一个动态变化的参数,如。
2025-10-14 16:36:41
999
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅