L2-017 人以群分 - 团体程序设计天梯赛-练习集 (pintia.cn)
社交网络中我们给每个人定义了一个“活跃度”,现希望根据这个指标把人群分为两大类,即外向型(outgoing,即活跃度高的)和内向型(introverted,即活跃度低的)。要求两类人群的规模尽可能接近,而他们的总活跃度差距尽可能拉开。
输入格式:
输入第一行给出一个正整数N(2≤N≤105)。随后一行给出N个正整数,分别是每个人的活跃度,其间以空格分隔。题目保证这些数字以及它们的和都不会超过231。
输出格式:
按下列格式输出:
Outgoing #: N1
Introverted #: N2
Diff = N3
其中N1
是外向型人的个数;N2
是内向型人的个数;N3
是两群人总活跃度之差的绝对值。
输入样例1:
10
23 8 10 99 46 2333 46 1 666 555
输出样例1:
Outgoing #: 5
Introverted #: 5
Diff = 3611
输入样例2:
13
110 79 218 69 3721 100 29 135 2 6 13 5188 85
输出样例2:
Outgoing #: 7
Introverted #: 6
Diff = 9359
题解
1. 数据输入
- 首先,从输入中读取正整数
n
,它表示人群的总人数,范围是2 ≤ N ≤ 10^5
。 - 接着,定义一个大小为
100001
的数组x
来存储每个人的活跃度。通过一个for
循环,依次读取n
个正整数,并将它们存储到数组x
中。题目保证这些数字以及它们的和都不会超过2^31
。
2. 数据排序
使用 sort
函数对数组 x
进行排序。sort(x, x + n)
会将数组 x
中的元素按照从小到大的顺序排列。这样做的目的是为了后续方便地将人群划分为活跃度低的内向型和活跃度高的外向型。
3. 人群划分与活跃度计算
- 定义两个变量
Outgoing
和Introverted
,分别用于记录外向型人群和内向型人群的总活跃度,初始值都为0
。 - 再定义两个变量
aa
和bb
,分别用于记录内向型人群和外向型人群的人数,初始值也都为0
。 - 通过一个
for
循环for(int i = 0; i < n / 2; i++)
,遍历数组的前n / 2
个元素。在循环中,每次将当前元素x[i]
加到Introverted
中,同时aa
自增1
,表示内向型人群的人数增加了1
。这样就计算出了内向型人群的总活跃度和人数。 - 接着,通过另一个
for
循环for(int i = n / 2; i < n; i++)
,遍历数组的后n - n / 2
个元素。在这个循环中,每次将当前元素x[i]
加到Outgoing
中,同时bb
自增1
,表示外向型人群的人数增加了1
。这样就计算出了外向型人群的总活跃度和人数。
4. 结果输出
- 计算两群人总活跃度之差的绝对值,将其存储在变量
res
中,即res = Outgoing - Introverted
。 - 最后,按照题目要求的格式输出结果:
- 输出外向型人的个数,格式为
"Outgoing #: "
加上bb
的值。 - 输出内向型人的个数,格式为
"Introverted #: "
加上aa
的值。 - 输出两群人总活跃度之差的绝对值,格式为
"Diff = "
加上res
的值。
- 输出外向型人的个数,格式为
代码
#include<bits/stdc++.h>
using namespace std;
int main(){
int n;
cin>>n;
int x[100001];
for(int i=0;i<n;i++){
cin>>x[i];
}
sort(x,x+n);
int Outgoing=0,Introverted=0;
int aa=0,bb=0;
for(int i=0;i<n/2;i++){
aa+=1;
Introverted+=x[i];
}
for(int i=n/2;i<n;i++){
bb+=1;
Outgoing+=x[i];
}
int res=Outgoing-Introverted;
cout<<"Outgoing #: "<<bb<<endl;
cout<<"Introverted #: "<<aa<<endl;
cout<<"Diff = "<<res;
return 0;
}