💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于粒子群算法优化K-means聚类的居民用电行为分析研究
一、研究背景与意义
随着智能电网和电力物联网的发展,居民用电数据的采集与分析成为电力系统优化、需求响应和用户服务的关键。传统K-means聚类算法因对初始聚类中心敏感、易陷入局部最优等问题,限制了其在复杂用电行为分析中的效果。粒子群优化(PSO)算法通过全局搜索能力优化K-means的初始聚类中心,可显著提升聚类质量与稳定性,为居民用电行为模式识别、用户分类及电力调度提供更精准的决策支持。
二、核心算法原理与实现方法
1. K-means算法的局限性
- 初始中心敏感:随机选择初始质心可能导致局部最优解。
- 依赖预设K值:需人工指定聚类数目,缺乏自适应性。
- 非凸数据适应性差:对非球形分布数据聚类效果不佳。
- 收敛速度慢:在大规模数据下迭代效率低。
2. 粒子群算法(PSO)的优化机制
- 群体智能搜索:模拟鸟群觅食行为,通过个体与群体经验的协同优化解空间搜索。
- 参数动态调整:惯性权重(平衡全局与局部搜索)、加速常数(个体与群体经验权重)的优化设置可提升收敛速度。
- 适应度函数设计:以类内距离平方和(SSE)作为评价指标,最小化适应度值以优化聚类中心。
3. PSO-K-means混合算法实现步骤
-
编码与初始化:将K-means的初始聚类中心编码为粒子位置,随机生成初始种群。
-
适应度计算:使用SSE作为适应度函数,评估粒子对应的聚类质量。
-
速度与位置更新:根据公式动态调整粒子速度和位置,引入惯性权重避免早熟收敛。
-
变异操作:检测粒子群收敛状态,对停滞粒子施加随机变异,增强多样性。
-
切换时机判定:当群体适应度方差低于阈值时,切换至K-means进行局部优化。
-
输出优化结果:获得全局最优的初始聚类中心,执行K-means完成最终聚类。
三、居民用电行为数据特征与预处理
1. 数据采集方式
- 智能电表数据:采集功率、用电时间、负荷波动等实时数据。
- 非介入式负荷监测:通过高频采样分解家电用电特征(如空调启停时间、功率因数)。
- 多维度特征提取:
- 时间维度:日/周/月用电曲线、峰谷时段占比。
- 负荷特征:平均功率、最大需量、负载波动率。
- 经济敏感性:电价响应系数、分时电价下用电转移率。
2. 数据预处理
- 缺失值填充:采用插值法或邻近时段均值填补。
- 归一化处理:消除量纲差异,如Z-score标准化。
- 异常值检测:基于3σ原则或孤立森林算法剔除噪声数据。
四、应用案例与效果评估
1. 实际应用场景
- 用户分类管理:福建电力公司通过聚类将客户分为优质型、风险型等类别,提升电费回收率。
- 负荷预测优化:结合PSO-K-means与LSTM模型,预测精度(MAPE)达0.77%。
- 需求响应策略:识别高弹性用户,制定分时电价激励方案。
2. 评估指标体系
- 内部指标:
- SSE(类内平方误差) :越小表明类内紧密度越高。
- 轮廓系数(Silhouette) :值越接近1,类间区分度越好。
- Calinski-Harabasz指数:类间方差与类内方差的比值,越大聚类效果越优。
- SSE(类内平方误差) :越小表明类内紧密度越高。
- 外部指标:
- 分类准确率:与实际用电标签(如高能耗、节能型)的匹配度。
- 业务效益指标:如电费回收率提升、峰谷差缩小比例。
算法 | SSE | 轮廓系数 | Calinski-Harabasz |
---|---|---|---|
传统K-means | 17.288 | 0.700 | 560.243 |
PSO-K-means | 17.255 | 0.691 | 562.001 |
五、行业规范与分类标准
根据《国民经济行业用电分类》(NB/T 33030-2018),居民用电行为需符合以下标准:
- 分类原则:按用电活动性质分为居民生活用电、工业用电、商业用电等。
- 细分维度:
- 居民类:家庭照明、家电用电(排除家庭工厂用电)。
- 特殊机构:学校、医院等与居民同价的公共服务用电。
- 统计要求:需区分城乡用电、峰谷时段用电量,支持精细化电力调度。
六、未来研究方向
- 动态聚类优化:结合流数据处理技术,实现实时用电行为分析。
- 多目标PSO改进:同时优化聚类紧密度、类间差异性和业务指标(如电价敏感性)。
- 可解释性增强:利用SHAP值等方法解释聚类结果与用电特征的关联。
📚2 运行结果
部分代码:
%% 最优参数带入聚类
[BestInitial,cluster,Index]=Result(Best_Pos,data,Replicate,K);
%% 画出聚类效果
figure
a=unique(Index); %找出分类出的个数
C=cell(1,length(a));
for i=1:length(a)
C(1,i)={find(Index==a(i))};
end
for j=1:K
data_get=data(C{1,j},:);
scatter(data_get(:,1),data_get(:,2),50,'filled','MarkerFaceAlpha',.6,'MarkerEdgeAlpha',.9);
hold on
hold on
end
plot(cluster(:,1),cluster(:,2),'kd','LineWidth',2);
hold on
SC=mean(silhouette(data,Index));
title_str=['PSO-Kmeans聚类',' 聚类数为:',num2str(K),' SC轮廓系数:',num2str(SC)];
title(title_str)
%% 每天的起止时间
x1 = datenum('00:00');
x2 = datenum('23:45');
%% 每天采样96个点,每间隔15分钟采集一个点
time = linspace(x1,x2,96);
%% 绘制用户日用电负荷曲线
figure
for i=1:size(data,1)
plot(time,data(i,:),'-')
hold on
end
xlabel('时间')
ylabel('负荷(kW)')
datetick('x',15)
title('用户日用电负荷曲线')
axis tight
box off
%% 绘制不同负荷特性曲线
for label=1:K
figure
plot(time,data(Index==label,:),'-')
hold on
title(['负荷类别:',num2str(label)])
xlabel('时间')
ylabel('负荷(kW)')
datetick('x',15)
axis tight
box off
end
%% 绘制负荷聚类中心
for label=1:K
figure
plot(time,cluster(label,:),'b-','linewidth',1)
hold on
title(['负荷类别中心:',num2str(label)])
xlabel('时间')
ylabel('负荷(kW)')
datetick('x',15)
axis tight
box off
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]易云飞,吴启明,唐凤仙.一种基于复合形粒子群算法的改进k—means聚类算法[J].教育技术导刊, 2008.
[2]倪萌萌,李春树,刘银.基于粒子群优化K-means聚类算法的快递网点选址方法研究[J].宁夏工程技术, 2023, 22(2):181-186.
[3]刘婷.基于粒子群和K-均值聚类算法的学生心理分析方法研究[J].电子设计工程, 2018, 26(19):5.DOI:10.3969/j.issn.1674-6236.2018.19.017.
[4]杨宏,邓晨成,邹芹,等.居民用电行为分析及潜力研究[J].电力大数据, 2020.
🌈4 Matlab代码、数据下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取