2. 跳表 (skip list)
这里先提出一个问题:
redis 为什么会选择用跳表来实现有序集合呢? 为什么不用红黑树呢
参考:https://juejin.im/post/57fa935b0e3dd90057c50fbc
1. 什么是跳表?
为一个值有序的链表建立多级索引,比如每2个节点提取一个节点到上一级,我们把抽出来的那一级叫做索引或索引层。如下图所示,其中 down 表示 down 指针,指向下一级节点。以此类推,对于节点数为n的链表,大约可以建立log2n-1
级索引。像这种为链表建立多级索引的数据结构就称为跳表。
2. 跳表的时间复杂度
-
计算跳表的高度
如果链表有n个节点,每2个节点抽取抽出一个节点作为上一级索引的节点,那第1级索引的节点个数大约是n/2
,第2级索引的节点个数大约是n/4
,依次类推,第k级索引的节点个数就是n/(2^k)
。假设索引有h级别,最高级的索引有2个节点,则有n/(2^h)=2
,得出h=log2n-1
,包含原始链表这一层,整个跳表的高度就是log2n
。 -
计算跳表的时间复杂度
假设我们在跳表中查询某个数据的时候,如果每一层都遍历 m 个节点,那在跳表中查询一个数据的时间复杂度就是O(m*logn)
。那这个 m 是多少呢?如下图所示,假设我们要查找的数据是 x,在第 k 级索引中,我们遍历到 y 节点之后,发现 x 大于 y,小于后面的节点 z,所以我们通过 y 的 down 指针,从第k级下降到第k-1
级索引。在第k-1
级索引中,y 和 z 之间只有3个节点(包含 y 和 z),所以,我们在k-1
级索引中最多只需要遍历3个节点,以此类推,每一级索引都最多只需要遍历3个节点。所以m=3。因此在跳表中查询某个数据的时间复杂度就是O(logn)
。
3. 跳表的空间复杂度
- 计算索引的节点总数
如果链表有n个节点,每2个节点抽取抽出一个节点作为上一级索引的节点,那每一级索引的节点数分别为:n/2,n/4,n/8,…,8,4,2
,等比数列求和n-1
,所以跳表的空间复杂度为O(n)
。 - 如何优化空间复杂度
如果链表有n个节点,每3或5个节点抽取抽出一个节点作为上一级索引的节点,那每一级索引的节点数分别为(以3为例):n/3,n/9,n/27,…,27,9,3,1
,等比数列求和n/2
,所以跳表的空间复杂度为O(n)
,和每2个节点抽取一次相比,时间复杂度要低不少呢。 - 高效的动态插入和删除?
跳表本质上就是链表,所以仅插作,插入和删除操时间复杂度就为O(1)
,但在实际情况中,要插入或删除某个节点,需要先查找到指定位置,而这个查找操作比较费时,但在跳表中这个查找操作的时间复杂度是O(logn)
,所以,跳表的插入和删除操作的是时间复杂度也是O(logn)
。 - 跳表索引动态更新?
当我们不停地往跳表中插入数据时,如果我们不更新索引,就有可能出现某 2 个索引结点之间数据非常多的情况。极端情况下,跳表还会退化成单链表。作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。如果你了解红黑树、AVL 树这样平衡二叉树,你就知道它们是通过左右旋的方式保持左右子树的大小平衡,而跳表是通过随机函数来维护前面提到的“平衡性”。当我们往跳表中插入数据的时候,我们可以选择同时将这个数据插入到部分索引层中。如何选择加入哪些索引层呢?我们通过一个随机函数,来决定将这个结点插入到哪几级索引中,比如随机函数生成了值 K,那我们就将这个结点添加到第一级到第 K 级这 K 级索引中。
4. 补充
1. 为什么 redis 要用跳表来实现有序集合,而不是红黑树?
redis 中的有序集合是通过跳表来实现的,严格点讲,其实还用到了散列表。如果你去查看 redis 的开发手册,就会发现,redis 中的有序集合支持的核心操作主要有下面这几个:
- 插入一个数据
- 删除一个数据
- 查找一个数据
- 按照区间查找数据(比如查找值在[100, 356]之间的数据)
- 迭代输出有序序列。
其中,插入、删除、查找以及迭代输出有序序列这几个操作,红黑树也可以完成,时间复杂度跟跳表是一样的。但是,按照区间来查找数据这个操作,红黑树的效率没有跳表高。对于按照区间查找数据这个操作,跳表可以做到 O(logn
) 的时间复杂度定位区间的起点,然后在原始链表中顺序往后遍历就可以了。这样做非常高效。当然,Redis 之所以用跳表来实现有序集合,还有其他原因,比如,跳表更容易代码实现。虽然跳表的实现也不简单,但比起红黑树来说还是好懂、好写多了,而简单就意味着可读性好,不容易出错。还有,跳表更加灵活,它可以通过改变索引构建策略,有效平衡执行效率和内存消耗。